organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 5| May 2010| Page o1090

N-(3,5-Di­chloro­phen­yl)-2,4-di­methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 1 April 2010; accepted 12 April 2010; online 17 April 2010)

In the crystal structure of the title compound, C14H13Cl2NO2S, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S=O bonds. The mol­ecule is bent at the N atom, with an C—SO2—NH—C torsion angle of −54.9 (3)°. The two benzene rings are tilted relative to each other by 82.3 (2)°. The mol­ecules are linked into centrosymmetric R22(8) motifs by N—H⋯O hydrogen bonds and C—H⋯π inter­actions along [100].

Related literature

For the preparation of the compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190.], 2009a[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.],b[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o3275.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13Cl2NO2S

  • Mr = 330.21

  • Monoclinic, C 2/c

  • a = 23.085 (3) Å

  • b = 8.113 (2) Å

  • c = 16.503 (3) Å

  • β = 102.03 (2)°

  • V = 3022.9 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 5.16 mm−1

  • T = 299 K

  • 0.55 × 0.45 × 0.38 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.164, Tmax = 0.245

  • 7561 measured reflections

  • 2690 independent reflections

  • 2340 reflections with I > 2σ(I)

  • Rint = 0.089

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.189

  • S = 1.14

  • 2690 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (4) 2.05 (5) 2.900 (4) 168 (4)
C10—H10⋯Cg1ii 0.93 2.92 3.834 (4) 168
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2008; 2009a,b), we report here the crystal structure of the title compound (I) , (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the SO bonds. The molecule is bent at the N atom with the C1—SO2—NH—C7 torsion angle of -54.9 (3)°, compared to the values of 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (II) (Gowda et al., 2009a), -68.1 (3)° in N-(3,5-dichlorophenyl)benzenesulfonamide (III)(Gowda et al., 2008) ; 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)- benzenesulfonamide (IV) (Gowda et al., 2009b) and -69.7 (2)° in 2,4-dimethyl-N-(3,4-dichlorophenyl)benzenesulfonamide (V) (Gowda et al., 2009b).

The two benzene rings in (I) are tilted relative to each other by 82.3 (1)°, compared to the values of 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in the two independent molecules of (II), 57.0 (1)° in (III), 82.1 (1)° in (IV) and 82.4 (1)° in (V). The other atomic parameters in (I) are similar to those observed in (II), (III), (IV), (V) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007) as representative examples.The molecules are linked into centrosymmetric R22(8) motifs by N—H···O hydrogen bonds and C—H···π interactions along [1 0 0] (Bernstein et al.,1995), Fig. 2.

Related literature top

For the preparation of the compound, see: Savitha & Gowda (2006). For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2008, 2009a,b). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N-(3,5-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its position refined with N—H = 0.86 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3,5-Dichlorophenyl)-2,4-dimethylbenzenesulfonamide top
Crystal data top
C14H13Cl2NO2SF(000) = 1360
Mr = 330.21Dx = 1.451 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 23.085 (3) Åθ = 5.5–18.6°
b = 8.113 (2) ŵ = 5.16 mm1
c = 16.503 (3) ÅT = 299 K
β = 102.03 (2)°Prism, colourless
V = 3022.9 (10) Å30.55 × 0.45 × 0.38 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2340 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.089
Graphite monochromatorθmax = 66.9°, θmin = 3.9°
ω/2θ scansh = 1527
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.164, Tmax = 0.245l = 1919
7561 measured reflections3 standard reflections every 120 min
2690 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.1031P)2 + 3.0862P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.006
2690 reflectionsΔρmax = 0.56 e Å3
187 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00090 (16)
Crystal data top
C14H13Cl2NO2SV = 3022.9 (10) Å3
Mr = 330.21Z = 8
Monoclinic, C2/cCu Kα radiation
a = 23.085 (3) ŵ = 5.16 mm1
b = 8.113 (2) ÅT = 299 K
c = 16.503 (3) Å0.55 × 0.45 × 0.38 mm
β = 102.03 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2340 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.089
Tmin = 0.164, Tmax = 0.2453 standard reflections every 120 min
7561 measured reflections intensity decay: 1.0%
2690 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.56 e Å3
2690 reflectionsΔρmin = 0.46 e Å3
187 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43013 (12)0.1399 (3)0.15596 (17)0.0411 (6)
C20.44290 (12)0.2976 (4)0.13142 (18)0.0442 (6)
C30.43210 (14)0.4268 (4)0.1793 (2)0.0509 (7)
H30.43970.53300.16310.061*
C40.41035 (13)0.4069 (4)0.2511 (2)0.0507 (7)
C50.39736 (14)0.2499 (4)0.27317 (19)0.0541 (8)
H50.38220.23380.32050.065*
C60.40659 (14)0.1169 (4)0.22618 (19)0.0505 (7)
H60.39710.01140.24120.061*
C70.35181 (14)0.0098 (4)0.0243 (2)0.0479 (7)
C80.33700 (14)0.0724 (4)0.1038 (2)0.0537 (8)
H80.36630.09480.13320.064*
C90.27851 (16)0.1011 (5)0.1390 (2)0.0653 (9)
C100.23406 (16)0.0720 (6)0.0964 (3)0.0728 (11)
H100.19460.09260.12050.087*
C110.24997 (17)0.0121 (5)0.0178 (3)0.0658 (10)
C120.30817 (16)0.0218 (5)0.0207 (2)0.0594 (9)
H120.31760.06390.07420.071*
C130.46692 (19)0.3326 (5)0.0555 (2)0.0657 (10)
H13A0.43710.30880.00700.079*
H13B0.50100.26480.05570.079*
H13C0.47800.44660.05510.079*
C140.4006 (2)0.5542 (5)0.3010 (3)0.0769 (12)
H14A0.36440.60780.27510.092*
H14B0.43310.62960.30400.092*
H14C0.39820.52000.35580.092*
Cl10.26077 (5)0.1724 (2)0.23956 (8)0.1056 (6)
Cl20.19530 (5)0.0269 (2)0.03757 (9)0.1007 (5)
N10.41245 (12)0.0223 (4)0.00734 (18)0.0542 (7)
H1N0.4333 (19)0.011 (5)0.027 (3)0.065*
O10.50684 (10)0.0457 (3)0.10170 (15)0.0615 (7)
O20.41982 (13)0.1739 (3)0.13907 (17)0.0680 (7)
S10.44494 (3)0.03942 (9)0.10412 (5)0.0485 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0405 (13)0.0437 (14)0.0396 (13)0.0051 (11)0.0094 (11)0.0025 (11)
C20.0423 (14)0.0489 (15)0.0427 (14)0.0023 (12)0.0115 (11)0.0066 (12)
C30.0515 (16)0.0429 (15)0.0588 (18)0.0019 (13)0.0128 (14)0.0043 (13)
C40.0469 (15)0.0571 (18)0.0489 (16)0.0066 (13)0.0117 (13)0.0040 (14)
C50.0572 (17)0.0655 (19)0.0440 (15)0.0038 (15)0.0207 (13)0.0031 (14)
C60.0584 (17)0.0503 (16)0.0460 (16)0.0012 (13)0.0181 (13)0.0088 (13)
C70.0446 (15)0.0497 (15)0.0491 (16)0.0012 (12)0.0092 (12)0.0122 (13)
C80.0481 (16)0.0595 (18)0.0534 (18)0.0003 (14)0.0105 (13)0.0058 (14)
C90.0530 (18)0.079 (2)0.059 (2)0.0018 (17)0.0004 (15)0.0007 (18)
C100.0436 (17)0.094 (3)0.076 (3)0.0021 (18)0.0022 (17)0.010 (2)
C110.0499 (18)0.081 (2)0.069 (2)0.0055 (17)0.0176 (17)0.0172 (19)
C120.0541 (18)0.072 (2)0.0534 (19)0.0005 (15)0.0141 (15)0.0095 (15)
C130.085 (2)0.062 (2)0.059 (2)0.0049 (18)0.0346 (19)0.0102 (16)
C140.090 (3)0.071 (3)0.075 (3)0.010 (2)0.028 (2)0.0170 (19)
Cl10.0679 (7)0.1625 (14)0.0765 (7)0.0020 (7)0.0073 (5)0.0331 (8)
Cl20.0616 (6)0.1549 (13)0.0940 (9)0.0108 (6)0.0353 (6)0.0121 (8)
N10.0481 (14)0.0703 (18)0.0441 (14)0.0076 (12)0.0096 (12)0.0056 (12)
O10.0525 (13)0.0771 (17)0.0535 (13)0.0247 (11)0.0077 (10)0.0028 (11)
O20.0908 (18)0.0436 (12)0.0717 (16)0.0060 (12)0.0214 (14)0.0064 (11)
S10.0521 (5)0.0462 (5)0.0475 (5)0.0114 (3)0.0106 (3)0.0007 (3)
Geometric parameters (Å, º) top
C1—C61.391 (4)C9—C101.379 (6)
C1—C21.392 (4)C9—Cl11.725 (4)
C1—S11.757 (3)C10—C111.362 (6)
C2—C31.366 (4)C10—H100.9300
C2—C131.500 (4)C11—C121.389 (5)
C3—C41.389 (5)C11—Cl21.735 (4)
C3—H30.9300C12—H120.9300
C4—C51.375 (5)C13—H13A0.9600
C4—C141.495 (5)C13—H13B0.9600
C5—C61.371 (5)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.381 (5)C14—H14C0.9600
C7—C121.394 (5)N1—S11.623 (3)
C7—N11.413 (4)N1—H1N0.86 (4)
C8—C91.374 (5)O1—S11.439 (2)
C8—H80.9300O2—S11.414 (3)
C6—C1—C2120.6 (3)C9—C10—H10121.2
C6—C1—S1116.4 (2)C10—C11—C12123.3 (4)
C2—C1—S1123.0 (2)C10—C11—Cl2119.0 (3)
C3—C2—C1117.5 (3)C12—C11—Cl2117.6 (3)
C3—C2—C13118.8 (3)C11—C12—C7117.2 (4)
C1—C2—C13123.7 (3)C11—C12—H12121.4
C2—C3—C4123.1 (3)C7—C12—H12121.4
C2—C3—H3118.5C2—C13—H13A109.5
C4—C3—H3118.5C2—C13—H13B109.5
C5—C4—C3118.1 (3)H13A—C13—H13B109.5
C5—C4—C14121.9 (3)C2—C13—H13C109.5
C3—C4—C14120.0 (3)H13A—C13—H13C109.5
C6—C5—C4120.7 (3)H13B—C13—H13C109.5
C6—C5—H5119.6C4—C14—H14A109.5
C4—C5—H5119.6C4—C14—H14B109.5
C5—C6—C1120.0 (3)H14A—C14—H14B109.5
C5—C6—H6120.0C4—C14—H14C109.5
C1—C6—H6120.0H14A—C14—H14C109.5
C8—C7—C12120.7 (3)H14B—C14—H14C109.5
C8—C7—N1116.7 (3)C7—N1—S1126.8 (2)
C12—C7—N1122.6 (3)C7—N1—H1N110 (3)
C9—C8—C7119.4 (3)S1—N1—H1N118 (3)
C9—C8—H8120.3O2—S1—O1118.57 (16)
C7—C8—H8120.3O2—S1—N1108.85 (17)
C8—C9—C10121.7 (4)O1—S1—N1103.52 (15)
C8—C9—Cl1118.6 (3)O2—S1—C1107.61 (14)
C10—C9—Cl1119.7 (3)O1—S1—C1109.74 (14)
C11—C10—C9117.7 (3)N1—S1—C1108.13 (14)
C11—C10—H10121.2
C6—C1—C2—C30.8 (4)Cl1—C9—C10—C11178.5 (3)
S1—C1—C2—C3176.7 (2)C9—C10—C11—C120.5 (7)
C6—C1—C2—C13178.5 (3)C9—C10—C11—Cl2179.7 (3)
S1—C1—C2—C134.0 (4)C10—C11—C12—C70.7 (6)
C1—C2—C3—C41.3 (5)Cl2—C11—C12—C7180.0 (3)
C13—C2—C3—C4179.5 (3)C8—C7—C12—C110.0 (5)
C2—C3—C4—C52.2 (5)N1—C7—C12—C11178.8 (3)
C2—C3—C4—C14179.0 (3)C8—C7—N1—S1159.3 (3)
C3—C4—C5—C61.0 (5)C12—C7—N1—S121.8 (5)
C14—C4—C5—C6179.9 (3)C7—N1—S1—O261.7 (3)
C4—C5—C6—C10.9 (5)C7—N1—S1—O1171.3 (3)
C2—C1—C6—C51.9 (5)C7—N1—S1—C154.9 (3)
S1—C1—C6—C5175.8 (2)C6—C1—S1—O29.6 (3)
C12—C7—C8—C91.0 (5)C2—C1—S1—O2172.8 (3)
N1—C7—C8—C9177.9 (3)C6—C1—S1—O1120.7 (3)
C7—C8—C9—C101.3 (6)C2—C1—S1—O156.9 (3)
C7—C8—C9—Cl1177.8 (3)C6—C1—S1—N1127.0 (2)
C8—C9—C10—C110.5 (7)C2—C1—S1—N155.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (4)2.05 (5)2.900 (4)168 (4)
C10—H10···Cg1ii0.932.923.834 (4)168
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H13Cl2NO2S
Mr330.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)23.085 (3), 8.113 (2), 16.503 (3)
β (°) 102.03 (2)
V3)3022.9 (10)
Z8
Radiation typeCu Kα
µ (mm1)5.16
Crystal size (mm)0.55 × 0.45 × 0.38
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.164, 0.245
No. of measured, independent and
observed [I > 2σ(I)] reflections
7561, 2690, 2340
Rint0.089
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.189, 1.14
No. of reflections2690
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.46

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (4)2.05 (5)2.900 (4)168 (4)
C10—H10···Cg1ii0.932.923.834 (4)168
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190.  Web of Science CSD CrossRef IUCr Journals
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576.  Web of Science CSD CrossRef IUCr Journals
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o3275.  Web of Science CSD CrossRef IUCr Journals
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 5| May 2010| Page o1090
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds