organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Formyl-t-3,t-5-di­methyl-r-2,c-6-di­phenyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 23 April 2010; accepted 18 May 2010; online 29 May 2010)

In the title compound, C20H21NO2, the piperidine ring adopts a distorted boat conformation. The dihedral angle between the two phenyl rings is 61.33 (18)°. In the crystal, inter­molecular C—H⋯O inter­actions link the mol­ecules into zigzag C(5) chains running parallel to [100].

Related literature

For general background to piperidine derivatives, see: Perumal et al. (2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santhos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis, see: Jeyaraman et al. (1999[Jeyaraman, R., Thenmozhiyal, J. C., Murugadoss, R. & Venkatraj, M. (1999). Indian J. Chem. 38B, 325-336.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21NO2

  • Mr = 307.38

  • Orthorhombic, P b c a

  • a = 7.4303 (4) Å

  • b = 15.3567 (6) Å

  • c = 29.6732 (13) Å

  • V = 3385.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.22 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.988

  • 16882 measured reflections

  • 4198 independent reflections

  • 2097 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.194

  • S = 1.02

  • 4198 reflections

  • 213 parameters

  • 25 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.98 2.48 3.398 (3) 156
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidine derivatives are valued heterocyclic compounds in the field of medicinal chemistry. Piperidin-4-ones are reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal et al., 2001; Dimmock et al., 2001). The crystallographic study of the title compound has been carried out to establish the molecular structure.

In the title molecule (Fig. 1), the piperidine ring adopts a distorted boat conformation; the puckering (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are: q2 = 0.637 (3) Å, q3 = -0.052 (3) Å, φ2 = 245.5 (2)° and Δs(C2 & C5) = 3.5 (2)°. The C8—C13 and C16—C21 phenyl rings are in axial [C4—C3—C2—C8 = 75.6 (3)°] and equatorial [C4—C5—C6—C16 = -166.8 (2)°] orientations, respectively. The methyl groups attached to atoms C3 and C5 of the piperidine ring are in axial and equatorial orientations [N1—C2—C3—C14 = 69.9 (2)° and N1—C6—C5—C15 = -168.1 (2)°]. The sum of bond angles around atom N1 (359.5°) of the piperidine ring is in accordance with sp2 hybridization.

Atom C6 at (x, y, z) acts as a hydrogen-bond donor to atom O2 of the molecule at (x-1/2, y, 1/2-z) forming a zigzag C(5) chain (Bernstein et al., 1995) running along the a axis, as shown in Fig. 2.

Related literature top

For general background to piperidine derivatives, see: Perumal et al. (2001); Dimmock et al. (2001). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Jeyaraman et al. (1999).

Experimental top

An ice-cold solution of acetic-formic anhydride prepared from acetic anhydride (10 ml) and 85% formic acid (5 ml) was added slowly to a cold solution of r-2,c-6-diphenyl-t-3,t-5-dimethyl piperidin-4-one (1.395 g, 5 mmol) in benzene (30 ml). The reaction mixture was stirred at room temperature for 5 h. The organic layer was separated, dried over anhydrous Na2SO4 and concentrated. The resulting mass was purified and crystallized from benzene- petroleum ether (333-335 K) in the ratio 1:1 (Jeyaraman et al., 1999).

Refinement top

Atom H7 was located in a difference map and its positional parameters were refined. The remaining H atoms were positioned geometrically (C–H =0.93-0.98 Å, ) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl and 1.2 Ueq(C) for other H atoms. The Uij parameters of atoms O1, C7, C10 and C11 were restrained to an approximate isotropic behaviour.

Structure description top

Piperidine derivatives are valued heterocyclic compounds in the field of medicinal chemistry. Piperidin-4-ones are reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal et al., 2001; Dimmock et al., 2001). The crystallographic study of the title compound has been carried out to establish the molecular structure.

In the title molecule (Fig. 1), the piperidine ring adopts a distorted boat conformation; the puckering (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are: q2 = 0.637 (3) Å, q3 = -0.052 (3) Å, φ2 = 245.5 (2)° and Δs(C2 & C5) = 3.5 (2)°. The C8—C13 and C16—C21 phenyl rings are in axial [C4—C3—C2—C8 = 75.6 (3)°] and equatorial [C4—C5—C6—C16 = -166.8 (2)°] orientations, respectively. The methyl groups attached to atoms C3 and C5 of the piperidine ring are in axial and equatorial orientations [N1—C2—C3—C14 = 69.9 (2)° and N1—C6—C5—C15 = -168.1 (2)°]. The sum of bond angles around atom N1 (359.5°) of the piperidine ring is in accordance with sp2 hybridization.

Atom C6 at (x, y, z) acts as a hydrogen-bond donor to atom O2 of the molecule at (x-1/2, y, 1/2-z) forming a zigzag C(5) chain (Bernstein et al., 1995) running along the a axis, as shown in Fig. 2.

For general background to piperidine derivatives, see: Perumal et al. (2001); Dimmock et al. (2001). For asymmetry parameters, see: Nardelli (1983). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the synthesis, see: Jeyaraman et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-Formyl-t-3,t-5-dimethyl-r-2,c-6-diphenylpiperidin-4-one top
Crystal data top
C20H21NO2F(000) = 1312
Mr = 307.38Dx = 1.206 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1246 reflections
a = 7.4303 (4) Åθ = 1.4–28.4°
b = 15.3567 (6) ŵ = 0.08 mm1
c = 29.6732 (13) ÅT = 292 K
V = 3385.9 (3) Å3Block, colourless
Z = 80.22 × 0.19 × 0.16 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4198 independent reflections
Radiation source: fine-focus sealed tube2097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scansθmax = 28.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 96
Tmin = 0.983, Tmax = 0.988k = 2018
16882 measured reflectionsl = 3938
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0741P)2 + 1.1948P]
where P = (Fo2 + 2Fc2)/3
4198 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.37 e Å3
25 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H21NO2V = 3385.9 (3) Å3
Mr = 307.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.4303 (4) ŵ = 0.08 mm1
b = 15.3567 (6) ÅT = 292 K
c = 29.6732 (13) Å0.22 × 0.19 × 0.16 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2097 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.988Rint = 0.030
16882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05925 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.37 e Å3
4198 reflectionsΔρmin = 0.23 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0192 (4)0.2060 (2)0.13459 (14)0.1697 (16)
O20.6395 (3)0.38855 (13)0.21978 (6)0.0841 (6)
N10.2046 (3)0.31856 (13)0.14813 (8)0.0690 (6)
C20.3721 (3)0.27494 (15)0.13546 (9)0.0645 (7)
H20.34260.21320.13170.077*
C30.5024 (3)0.28034 (15)0.17521 (8)0.0565 (6)
H30.62040.25960.16510.068*
C40.5235 (3)0.37170 (15)0.19238 (8)0.0563 (6)
C50.3986 (3)0.44063 (14)0.17429 (8)0.0535 (6)
H50.44440.45700.14450.064*
C60.2059 (3)0.40703 (16)0.16730 (8)0.0586 (6)
H60.14980.40340.19710.070*
C70.0458 (5)0.2769 (3)0.14840 (17)0.1186 (15)
C80.4415 (4)0.30662 (16)0.09006 (9)0.0715 (8)
C90.3332 (6)0.2922 (2)0.05318 (12)0.1179 (14)
H90.22430.26320.05690.141*
C100.3834 (9)0.3199 (3)0.01118 (15)0.1455 (18)
H100.31060.30780.01350.175*
C110.5382 (9)0.3649 (3)0.00538 (13)0.1369 (17)
H110.56790.38690.02290.164*
C120.6510 (6)0.3778 (3)0.04115 (13)0.1199 (14)
H120.76010.40650.03710.144*
C130.6019 (5)0.3479 (2)0.08344 (10)0.0854 (9)
H130.67940.35600.10770.103*
C140.4401 (4)0.22289 (18)0.21443 (10)0.0781 (8)
H14A0.52360.22810.23900.117*
H14B0.43480.16330.20470.117*
H14C0.32290.24130.22420.117*
C150.3989 (4)0.52323 (17)0.20290 (10)0.0779 (8)
H15A0.33430.51280.23040.117*
H15B0.34180.56950.18650.117*
H15C0.52070.53930.20980.117*
C160.0934 (3)0.46917 (17)0.13948 (9)0.0627 (6)
C170.0611 (4)0.50498 (19)0.15754 (11)0.0781 (8)
H170.09500.48950.18660.094*
C180.1656 (4)0.5623 (2)0.13407 (17)0.1041 (12)
H180.26860.58550.14720.125*
C190.1192 (6)0.5849 (2)0.09201 (18)0.1146 (14)
H190.19020.62410.07600.138*
C200.0328 (6)0.5506 (2)0.07227 (12)0.1109 (12)
H200.06380.56620.04300.133*
C210.1400 (5)0.4924 (2)0.09632 (10)0.0881 (9)
H210.24320.46940.08320.106*
H70.076 (5)0.287 (2)0.1562 (11)0.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.113 (2)0.099 (2)0.298 (4)0.0455 (18)0.089 (2)0.053 (2)
O20.0795 (13)0.0781 (13)0.0947 (14)0.0123 (10)0.0379 (11)0.0045 (10)
N10.0443 (11)0.0572 (12)0.1055 (16)0.0146 (10)0.0220 (11)0.0253 (11)
C20.0677 (16)0.0427 (12)0.0832 (17)0.0081 (12)0.0297 (13)0.0010 (12)
C30.0484 (12)0.0515 (13)0.0695 (14)0.0012 (11)0.0139 (11)0.0017 (11)
C40.0486 (12)0.0571 (14)0.0631 (14)0.0099 (11)0.0099 (11)0.0045 (11)
C50.0527 (12)0.0480 (12)0.0597 (13)0.0046 (10)0.0025 (10)0.0044 (10)
C60.0474 (12)0.0678 (15)0.0606 (13)0.0004 (11)0.0032 (10)0.0163 (12)
C70.085 (2)0.078 (2)0.193 (4)0.038 (2)0.057 (3)0.057 (2)
C80.096 (2)0.0484 (13)0.0705 (17)0.0024 (14)0.0257 (15)0.0083 (12)
C90.172 (4)0.095 (2)0.087 (2)0.018 (2)0.062 (2)0.0030 (19)
C100.222 (5)0.127 (4)0.087 (3)0.001 (4)0.060 (3)0.003 (2)
C110.222 (5)0.120 (3)0.069 (2)0.018 (3)0.006 (3)0.008 (2)
C120.153 (4)0.123 (3)0.083 (2)0.004 (3)0.030 (3)0.015 (2)
C130.101 (2)0.089 (2)0.0661 (17)0.0029 (19)0.0057 (16)0.0164 (15)
C140.0777 (18)0.0679 (17)0.0887 (19)0.0093 (14)0.0188 (15)0.0189 (14)
C150.094 (2)0.0595 (16)0.0801 (18)0.0007 (15)0.0063 (16)0.0074 (14)
C160.0525 (13)0.0661 (15)0.0696 (15)0.0061 (12)0.0013 (11)0.0106 (12)
C170.0534 (15)0.0730 (18)0.108 (2)0.0041 (14)0.0022 (15)0.0017 (16)
C180.0604 (18)0.070 (2)0.182 (4)0.0121 (16)0.019 (2)0.005 (2)
C190.095 (3)0.075 (2)0.174 (4)0.011 (2)0.054 (3)0.029 (3)
C200.137 (3)0.098 (3)0.097 (2)0.008 (3)0.023 (2)0.037 (2)
C210.097 (2)0.089 (2)0.0784 (18)0.0259 (17)0.0042 (16)0.0265 (16)
Geometric parameters (Å, º) top
O1—C71.180 (5)C10—H100.93
O2—C41.213 (3)C11—C121.367 (6)
N1—C71.342 (4)C11—H110.93
N1—C21.462 (3)C12—C131.385 (4)
N1—C61.473 (3)C12—H120.93
C2—C81.522 (4)C13—H130.93
C2—C31.528 (3)C14—H14A0.96
C2—H20.98C14—H14B0.96
C3—C41.501 (3)C14—H14C0.96
C3—C141.532 (3)C15—H15A0.96
C3—H30.98C15—H15B0.96
C4—C51.507 (3)C15—H15C0.96
C5—C151.526 (3)C16—C211.374 (4)
C5—C61.536 (3)C16—C171.381 (4)
C5—H50.98C17—C181.365 (4)
C6—C161.513 (3)C17—H170.93
C6—H60.98C18—C191.341 (5)
C7—H70.95 (4)C18—H180.93
C8—C131.363 (4)C19—C201.378 (5)
C8—C91.376 (4)C19—H190.93
C9—C101.369 (6)C20—C211.393 (4)
C9—H90.93C20—H200.93
C10—C111.353 (7)C21—H210.93
C7—N1—C2122.1 (3)C9—C10—H10119.8
C7—N1—C6116.3 (3)C10—C11—C12119.8 (4)
C2—N1—C6121.11 (17)C10—C11—H11120.1
N1—C2—C8111.7 (2)C12—C11—H11120.1
N1—C2—C3108.4 (2)C11—C12—C13119.6 (4)
C8—C2—C3116.8 (2)C11—C12—H12120.2
N1—C2—H2106.4C13—C12—H12120.2
C8—C2—H2106.4C8—C13—C12121.0 (3)
C3—C2—H2106.4C8—C13—H13119.5
C4—C3—C2112.28 (19)C12—C13—H13119.5
C4—C3—C14108.2 (2)C3—C14—H14A109.5
C2—C3—C14111.3 (2)C3—C14—H14B109.5
C4—C3—H3108.3H14A—C14—H14B109.5
C2—C3—H3108.3C3—C14—H14C109.5
C14—C3—H3108.3H14A—C14—H14C109.5
O2—C4—C3120.1 (2)H14B—C14—H14C109.5
O2—C4—C5121.8 (2)C5—C15—H15A109.5
C3—C4—C5118.12 (19)C5—C15—H15B109.5
C4—C5—C15112.6 (2)H15A—C15—H15B109.5
C4—C5—C6112.73 (18)C5—C15—H15C109.5
C15—C5—C6110.8 (2)H15A—C15—H15C109.5
C4—C5—H5106.7H15B—C15—H15C109.5
C15—C5—H5106.7C21—C16—C17117.9 (3)
C6—C5—H5106.7C21—C16—C6122.2 (2)
N1—C6—C16111.6 (2)C17—C16—C6119.9 (2)
N1—C6—C5111.58 (19)C18—C17—C16122.1 (3)
C16—C6—C5112.11 (19)C18—C17—H17118.9
N1—C6—H6107.1C16—C17—H17118.9
C16—C6—H6107.1C19—C18—C17119.7 (3)
C5—C6—H6107.1C19—C18—H18120.1
O1—C7—N1125.8 (5)C17—C18—H18120.1
O1—C7—H794 (2)C18—C19—C20120.5 (3)
N1—C7—H7140 (2)C18—C19—H19119.8
C13—C8—C9118.1 (3)C20—C19—H19119.8
C13—C8—C2124.9 (2)C19—C20—C21119.8 (3)
C9—C8—C2117.0 (3)C19—C20—H20120.1
C10—C9—C8121.0 (4)C21—C20—H20120.1
C10—C9—H9119.5C16—C21—C20120.0 (3)
C8—C9—H9119.5C16—C21—H21120.0
C11—C10—C9120.4 (4)C20—C21—H21120.0
C11—C10—H10119.8
C7—N1—C2—C8109.2 (3)C6—N1—C7—O1179.9 (4)
C6—N1—C2—C879.4 (3)N1—C2—C8—C13117.9 (3)
C7—N1—C2—C3120.7 (3)C3—C2—C8—C137.7 (4)
C6—N1—C2—C350.6 (3)N1—C2—C8—C962.1 (3)
N1—C2—C3—C451.5 (3)C3—C2—C8—C9172.3 (3)
C8—C2—C3—C475.6 (3)C13—C8—C9—C101.2 (5)
N1—C2—C3—C1469.9 (2)C2—C8—C9—C10178.8 (4)
C8—C2—C3—C14162.9 (2)C8—C9—C10—C112.3 (7)
C2—C3—C4—O2170.3 (2)C9—C10—C11—C124.3 (8)
C14—C3—C4—O266.4 (3)C10—C11—C12—C132.7 (7)
C2—C3—C4—C59.2 (3)C9—C8—C13—C122.7 (5)
C14—C3—C4—C5114.1 (2)C2—C8—C13—C12177.3 (3)
O2—C4—C5—C1516.0 (3)C11—C12—C13—C80.8 (6)
C3—C4—C5—C15164.5 (2)N1—C6—C16—C2166.4 (3)
O2—C4—C5—C6142.4 (2)C5—C6—C16—C2159.5 (3)
C3—C4—C5—C638.2 (3)N1—C6—C16—C17114.1 (3)
C7—N1—C6—C1665.6 (3)C5—C6—C16—C17120.0 (3)
C2—N1—C6—C16122.6 (2)C21—C16—C17—C180.5 (4)
C7—N1—C6—C5168.1 (3)C6—C16—C17—C18179.0 (3)
C2—N1—C6—C53.7 (3)C16—C17—C18—C190.3 (5)
C4—C5—C6—N140.9 (3)C17—C18—C19—C200.2 (6)
C15—C5—C6—N1168.1 (2)C18—C19—C20—C210.5 (6)
C4—C5—C6—C16166.8 (2)C17—C16—C21—C200.1 (5)
C15—C5—C6—C1665.9 (3)C6—C16—C21—C20179.4 (3)
C2—N1—C7—O18.2 (6)C19—C20—C21—C160.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.483.398 (3)156
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H21NO2
Mr307.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)7.4303 (4), 15.3567 (6), 29.6732 (13)
V3)3385.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.983, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
16882, 4198, 2097
Rint0.030
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.194, 1.02
No. of reflections4198
No. of parameters213
No. of restraints25
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.483.398 (3)156
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

KR thanks the TBI Consultancy, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, Tamilnadu, India, for the encouragement to pursue the programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santhos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJeyaraman, R., Thenmozhiyal, J. C., Murugadoss, R. & Venkatraj, M. (1999). Indian J. Chem. 38B, 325–336.  CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds