metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-4-fluoro-2,6-di­formyl­phenolato)bis­­[di­aqua­nickel(II)] dichloride

aKey Laboratory for Green Chemical Processes of the Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China, bHubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Institute for Nationalities, Wuhan Institute of Technology, Enshi 445000, People's Republic of China, and cState Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: zhiqpan@163.com

(Received 29 March 2010; accepted 4 May 2010; online 19 May 2010)

In the title dinuclear nickel(II) complex, [Ni2(C8H4FO3)2(H2O)4]Cl2, synthesized by the reaction between 4-fluoro-2,6-diformyl­phenol and nickel(II) chloride in methanol, the coordination cation is located on an inversion center and the NiII atom adopts a slightly distorted octa­hedral coordination geometry. The two Ni atoms are bridged by two phenolate O atoms and the intra­molecular Ni⋯Ni distance is 3.0751 (9) Å. The crystal structure is stabilized by O—H⋯Cl hydrogen bonds.

Related literature

For the synthesis of related compounds and their properties, see: Thompson et al. (1996[Thompson, I. K., Mandal, S. K., Tandon, S. S., Bridson, J. N. & Park, M. K. (1996). Inorg. Chem. 35, 3117-3125.]); Zhou et al. (2005[Zhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Liu, Y. Q. (2005). J. Coord. Chem. 58, 443-451.]); Raimondi et al. (2004[Raimondi, A. C., De Souza, V. R., Toma, H. E., Mangrich, A. S., Hasegawa, T. & Nunes, F. S. (2004). Polyhedron, 23, 2069-2074.]); Taniguchi (1984[Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683-2684.]); Mohanta et al. (1998[Mohanta, S., Baitalik, S., Dutta, S. K. & Adhikary, B. (1998). Polyhedron, 17, 2669-2677.]); Wang et al. (1997[Wang, Z., Reibenspies, J. & Martell, A. E. (1997). Inorg. Chem. 36, 629-636.]). For related structures, see: Adhikary et al. (1987[Adhikary, B., Biswas, A. K., Nag, K., Zanello, P. & Cinquantini, A. (1987). Polyhedron, 6, 897-905.]); Zhou et al. (2007[Zhou, H., Peng, Z. H., Pan, Z. Q., Song, Y., Huang, Q. M. & Hu, X. L. (2007). Polyhedron, 26, 3233-3241.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C8H4FO3)2(H2O)4]Cl2

  • Mr = 594.61

  • Monoclinic, P 21 /c

  • a = 8.3299 (14) Å

  • b = 13.576 (2) Å

  • c = 9.9965 (17) Å

  • β = 114.623 (3)°

  • V = 1027.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.603, Tmax = 0.672

  • 5827 measured reflections

  • 2018 independent reflections

  • 1708 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.119

  • S = 1.05

  • 2018 reflections

  • 157 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯Cl1 0.85 (5) 2.44 (3) 3.198 (4) 149 (6)
O4—H4B⋯Cl1i 0.85 (5) 2.45 (3) 3.241 (4) 154 (5)
O5—H5C⋯Cl1ii 0.85 (2) 2.61 (4) 3.313 (4) 141 (5)
O5—H5A⋯Cl1iii 0.86 (6) 2.39 (4) 3.101 (4) 142 (5)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenoxide-bridged dinuclear complexes have been extensively studied for several decades, most of them were derived from the cyclocondensation of 2,6-diformyl-4-R-phenol and alkyldiamine in the presence of metal ions (Thompson et al.,1996; Zhou et al., 2005; Raimondi et al., 2004).With short distances between the two metal ions in the complexes, they show special electrical and magnetic properties (Mohanta et al., 1998; Wang et al., 1997). Adhikary et al. reported a phenoxide-bridged dinuclear nickel(II) complex, obtained directly from the mixture of 2,6-diformyl-4-methyl-phenol and nickel(II) perchlorate (Adhikary et al., 1987). Here we report the crystal structure of a new dinuclear NiII complex with fluorine substituent in the phenyl ring. The diference between the title complex and the one Adhikary reported is that they have different substituents in the phenyl ring and different counter-anions.

The coordination cation consists of two 2,6-diformyl-4-flurophenolate ligands, four water molecules, two NiII ions (Fig. 1). The chlorine ions do not participate in coordination to the Ni atoms. Each Ni atom has a slightly distorted octahedral coordination geometry and it deviates from the equatorial plane defined by four coordinating oxygen atoms of the organic ligand by 0.0266 (4) Å. The axial positions are occupied by two water molecules with Ni–O distances of 2.057 (4) Å and 2.067 (4) Å.The Ni—O distance in the basal plane is in the range of 1.995 (4) Å - 2.019 (3) Å. The presence of the two bridging phenolate O atoms gives rise to a short metal-metal contact of 3.0751 (9) Å that is slightly longer than those of binuclear nickel(II) complexes with macrocyclic phenoxo-bridging ligands (Zhou et al., 2007).

Related literature top

For the synthesis of related compounds and their properties, see: Thompson et al. (1996); Zhou et al. (2005); Raimondi et al. (2004); Taniguchi (1984); Mohanta et al. (1998); Wang et al. (1997). For related structures, see: Adhikary et al. (1987); Zhou et al. (2007).

Experimental top

2, 6-Diformyl-4-fluorophenol was prepared according to the literature method (Taniguchi, 1984). To a solution of 2,6-diformyl-4-fluorinphenol (1 mmol, 0.17 g) in absolute methanol (10 ml) was added a methanol solution (10 ml) containing NiCl22H2O (1 mmol, 0.17 g). The solution was stirred vigorously for 24 h at room temperature and filtrated. The dark-green block-shaped crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of solvent over a period of two weeks.

Refinement top

The H atoms of water molecules were found in a difference Fourier map, and the O—H distances were restrained to 0.85 (1) Å; their temperature factor was set to 1.2Ueq(O). All other H atoms were placed in calculated positions with C—H = 0.93 Å and included in the refinement in the riding-model approximation with U(H) set to 1.2Ueq(C).

Structure description top

Phenoxide-bridged dinuclear complexes have been extensively studied for several decades, most of them were derived from the cyclocondensation of 2,6-diformyl-4-R-phenol and alkyldiamine in the presence of metal ions (Thompson et al.,1996; Zhou et al., 2005; Raimondi et al., 2004).With short distances between the two metal ions in the complexes, they show special electrical and magnetic properties (Mohanta et al., 1998; Wang et al., 1997). Adhikary et al. reported a phenoxide-bridged dinuclear nickel(II) complex, obtained directly from the mixture of 2,6-diformyl-4-methyl-phenol and nickel(II) perchlorate (Adhikary et al., 1987). Here we report the crystal structure of a new dinuclear NiII complex with fluorine substituent in the phenyl ring. The diference between the title complex and the one Adhikary reported is that they have different substituents in the phenyl ring and different counter-anions.

The coordination cation consists of two 2,6-diformyl-4-flurophenolate ligands, four water molecules, two NiII ions (Fig. 1). The chlorine ions do not participate in coordination to the Ni atoms. Each Ni atom has a slightly distorted octahedral coordination geometry and it deviates from the equatorial plane defined by four coordinating oxygen atoms of the organic ligand by 0.0266 (4) Å. The axial positions are occupied by two water molecules with Ni–O distances of 2.057 (4) Å and 2.067 (4) Å.The Ni—O distance in the basal plane is in the range of 1.995 (4) Å - 2.019 (3) Å. The presence of the two bridging phenolate O atoms gives rise to a short metal-metal contact of 3.0751 (9) Å that is slightly longer than those of binuclear nickel(II) complexes with macrocyclic phenoxo-bridging ligands (Zhou et al., 2007).

For the synthesis of related compounds and their properties, see: Thompson et al. (1996); Zhou et al. (2005); Raimondi et al. (2004); Taniguchi (1984); Mohanta et al. (1998); Wang et al. (1997). For related structures, see: Adhikary et al. (1987); Zhou et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the labeling of the non-H atoms and 30% probability displacement ellipsoids. Atoms with the suffix (*) are generated by the symmetry operation 1-x, 1-y, 1-z.
Bis(µ-4-fluoro-2,6-diformylphenolato)bis[diaquanickel(II)] dichloride top
Crystal data top
[Ni2(C8H4FO3)2(H2O)4]Cl2F(000) = 600
Mr = 594.61Dx = 1.922 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3902 reflections
a = 8.3299 (14) Åθ = 2.2–28.0°
b = 13.576 (2) ŵ = 2.16 mm1
c = 9.9965 (17) ÅT = 291 K
β = 114.623 (3)°Block, green
V = 1027.6 (3) Å30.26 × 0.22 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2018 independent reflections
Radiation source: sealed tube1708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 107
Tmin = 0.603, Tmax = 0.672k = 1516
5827 measured reflectionsl = 812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.06P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
2018 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Ni2(C8H4FO3)2(H2O)4]Cl2V = 1027.6 (3) Å3
Mr = 594.61Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3299 (14) ŵ = 2.16 mm1
b = 13.576 (2) ÅT = 291 K
c = 9.9965 (17) Å0.26 × 0.22 × 0.20 mm
β = 114.623 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2018 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1708 reflections with I > 2σ(I)
Tmin = 0.603, Tmax = 0.672Rint = 0.041
5827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0514 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
2018 reflectionsΔρmin = 0.94 e Å3
157 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2077 (6)0.3085 (3)0.2584 (5)0.0349 (11)
H10.11590.26470.20950.042*
C20.2373 (6)0.3811 (3)0.1689 (5)0.0281 (9)
C30.1336 (6)0.3705 (3)0.0166 (5)0.0331 (10)
H30.05590.31780.01820.040*
C40.1475 (7)0.4376 (4)0.0792 (5)0.0401 (12)
C50.2548 (7)0.5179 (4)0.0329 (5)0.0370 (11)
H50.26090.56300.10070.044*
C60.3552 (6)0.5318 (3)0.1172 (5)0.0276 (9)
C70.3474 (5)0.4643 (3)0.2223 (5)0.0228 (8)
C80.4651 (6)0.6193 (4)0.1539 (6)0.0356 (11)
H80.46800.65450.07520.043*
Cl10.16724 (17)0.66791 (9)0.64475 (15)0.0406 (3)
F10.0499 (5)0.4245 (3)0.2256 (3)0.0555 (9)
Ni10.43045 (7)0.40202 (4)0.53212 (6)0.02194 (18)
O10.2874 (4)0.2955 (2)0.3923 (4)0.0318 (7)
O20.4438 (4)0.4760 (2)0.3627 (3)0.0249 (6)
O30.5544 (5)0.6519 (2)0.2770 (4)0.0351 (8)
O40.1900 (5)0.4629 (3)0.4960 (4)0.0415 (8)
H4A0.201 (8)0.502 (4)0.565 (5)0.050*
H4B0.116 (6)0.417 (3)0.484 (7)0.050*
O50.6594 (5)0.3234 (3)0.5759 (4)0.0402 (8)
H5C0.725 (7)0.313 (4)0.6662 (18)0.048*
H5A0.717 (7)0.354 (4)0.535 (6)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.032 (2)0.034 (3)0.0109 (19)0.008 (2)0.002 (2)
C20.024 (2)0.025 (2)0.035 (2)0.0003 (17)0.0122 (18)0.0051 (18)
C30.028 (2)0.032 (2)0.034 (3)0.0002 (19)0.0079 (19)0.010 (2)
C40.050 (3)0.042 (3)0.019 (2)0.012 (2)0.006 (2)0.001 (2)
C50.055 (3)0.035 (3)0.018 (2)0.001 (2)0.012 (2)0.0028 (19)
C60.031 (2)0.027 (2)0.024 (2)0.0020 (17)0.0109 (17)0.0029 (17)
C70.0206 (19)0.0228 (19)0.028 (2)0.0044 (15)0.0127 (17)0.0059 (17)
C80.039 (3)0.036 (3)0.036 (3)0.004 (2)0.020 (2)0.011 (2)
Cl10.0417 (7)0.0394 (6)0.0449 (7)0.0017 (5)0.0222 (6)0.0033 (5)
F10.066 (2)0.0570 (19)0.0244 (15)0.0102 (17)0.0007 (14)0.0047 (14)
Ni10.0241 (3)0.0209 (3)0.0230 (3)0.0028 (2)0.0120 (2)0.0000 (2)
O10.0358 (16)0.0266 (16)0.0336 (18)0.0065 (13)0.0149 (14)0.0018 (13)
O20.0303 (15)0.0256 (14)0.0188 (14)0.0044 (12)0.0103 (12)0.0019 (11)
O30.0455 (19)0.0349 (18)0.0282 (18)0.0055 (15)0.0186 (15)0.0046 (14)
O40.0335 (18)0.040 (2)0.053 (2)0.0004 (15)0.0196 (17)0.0023 (17)
O50.0359 (18)0.051 (2)0.0361 (19)0.0158 (16)0.0178 (15)0.0147 (17)
Geometric parameters (Å, º) top
C1—O11.234 (6)C8—O31.226 (6)
C1—C21.421 (7)C8—H80.9300
C1—H10.9300Ni1—O3i1.998 (3)
C2—C31.410 (6)Ni1—O2i2.007 (3)
C2—C71.412 (6)Ni1—O22.012 (3)
C3—C41.361 (7)Ni1—O12.019 (3)
C3—H30.9300Ni1—O42.054 (4)
C4—F11.358 (5)Ni1—O52.067 (3)
C4—C51.364 (7)O2—Ni1i2.007 (3)
C5—C61.393 (6)O3—Ni1i1.998 (3)
C5—H50.9300O4—H4A0.85 (5)
C6—C71.416 (6)O4—H4B0.85 (5)
C6—C81.450 (6)O5—H5C0.85 (2)
C7—O21.304 (5)O5—H5A0.86 (6)
O1—C1—C2128.7 (4)O3i—Ni1—O2169.53 (13)
O1—C1—H1115.6O2i—Ni1—O280.18 (13)
C2—C1—H1115.6O3i—Ni1—O1100.54 (14)
C3—C2—C1114.8 (4)O2i—Ni1—O1169.22 (12)
C3—C2—C7119.9 (4)O2—Ni1—O189.91 (13)
C1—C2—C7125.0 (4)O3i—Ni1—O489.11 (15)
C4—C3—C2119.9 (4)O2i—Ni1—O491.02 (14)
C4—C3—H3120.1O2—Ni1—O492.46 (14)
C2—C3—H3120.1O1—Ni1—O485.14 (14)
F1—C4—C3118.9 (5)O3i—Ni1—O585.59 (15)
F1—C4—C5118.9 (5)O2i—Ni1—O594.66 (15)
C3—C4—C5122.2 (4)O2—Ni1—O593.79 (13)
C4—C5—C6119.2 (5)O1—Ni1—O590.19 (15)
C4—C5—H5120.4O4—Ni1—O5172.19 (15)
C6—C5—H5120.4C1—O1—Ni1123.0 (3)
C5—C6—C7121.3 (4)C7—O2—Ni1i128.1 (3)
C5—C6—C8114.5 (4)C7—O2—Ni1128.3 (3)
C7—C6—C8124.1 (4)Ni1i—O2—Ni199.82 (13)
O2—C7—C2121.1 (4)C8—O3—Ni1i126.6 (3)
O2—C7—C6121.5 (4)Ni1—O4—H4A110 (4)
C2—C7—C6117.4 (4)Ni1—O4—H4B109 (4)
O3—C8—C6127.3 (4)H4A—O4—H4B114 (6)
O3—C8—H8116.4Ni1—O5—H5C116 (4)
C6—C8—H8116.4Ni1—O5—H5A108 (4)
O3i—Ni1—O2i89.45 (13)H5C—O5—H5A111 (6)
O1—C1—C2—C3174.3 (5)O3i—Ni1—O1—C1161.0 (4)
O1—C1—C2—C711.6 (8)O2i—Ni1—O1—C13.4 (9)
C1—C2—C3—C4178.2 (5)O2—Ni1—O1—C119.6 (4)
C7—C2—C3—C43.7 (7)O4—Ni1—O1—C172.9 (4)
C2—C3—C4—F1178.3 (4)O5—Ni1—O1—C1113.4 (4)
C2—C3—C4—C52.4 (8)C2—C7—O2—Ni1i166.2 (3)
F1—C4—C5—C6180.0 (5)C6—C7—O2—Ni1i16.8 (6)
C3—C4—C5—C60.7 (8)C2—C7—O2—Ni112.6 (5)
C4—C5—C6—C70.3 (8)C6—C7—O2—Ni1170.5 (3)
C4—C5—C6—C8179.7 (5)O3i—Ni1—O2—C7167.1 (7)
C3—C2—C7—O2179.7 (4)O2i—Ni1—O2—C7159.3 (4)
C1—C2—C7—O25.8 (7)O1—Ni1—O2—C716.5 (3)
C3—C2—C7—C63.3 (6)O4—Ni1—O2—C768.7 (3)
C1—C2—C7—C6177.1 (4)O5—Ni1—O2—C7106.7 (3)
C5—C6—C7—O2178.6 (4)O3i—Ni1—O2—Ni1i7.8 (8)
C8—C6—C7—O21.4 (7)O2i—Ni1—O2—Ni1i0.0
C5—C6—C7—C21.6 (6)O1—Ni1—O2—Ni1i175.74 (14)
C8—C6—C7—C2178.4 (4)O4—Ni1—O2—Ni1i90.61 (15)
C5—C6—C8—O3173.9 (5)O5—Ni1—O2—Ni1i94.08 (16)
C7—C6—C8—O36.1 (8)C6—C8—O3—Ni1i2.9 (7)
C2—C1—O1—Ni121.3 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···Cl10.85 (5)2.44 (3)3.198 (4)149 (6)
O4—H4B···Cl1ii0.85 (5)2.45 (3)3.241 (4)154 (5)
O5—H5C···Cl1iii0.85 (2)2.61 (4)3.313 (4)141 (5)
O5—H5A···Cl1i0.86 (6)2.39 (4)3.101 (4)142 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni2(C8H4FO3)2(H2O)4]Cl2
Mr594.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)8.3299 (14), 13.576 (2), 9.9965 (17)
β (°) 114.623 (3)
V3)1027.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.16
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.603, 0.672
No. of measured, independent and
observed [I > 2σ(I)] reflections
5827, 2018, 1708
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.119, 1.05
No. of reflections2018
No. of parameters157
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.94

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···Cl10.85 (5)2.44 (3)3.198 (4)149 (6)
O4—H4B···Cl1i0.85 (5)2.45 (3)3.241 (4)154 (5)
O5—H5C···Cl1ii0.85 (2)2.61 (4)3.313 (4)141 (5)
O5—H5A···Cl1iii0.86 (6)2.39 (4)3.101 (4)142 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to thank the National Science Foundation of China for financial support (No. 20871097).

References

First citationAdhikary, B., Biswas, A. K., Nag, K., Zanello, P. & Cinquantini, A. (1987). Polyhedron, 6, 897–905.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMohanta, S., Baitalik, S., Dutta, S. K. & Adhikary, B. (1998). Polyhedron, 17, 2669–2677.  Web of Science CrossRef CAS Google Scholar
First citationRaimondi, A. C., De Souza, V. R., Toma, H. E., Mangrich, A. S., Hasegawa, T. & Nunes, F. S. (2004). Polyhedron, 23, 2069–2074.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683–2684.  CrossRef CAS Web of Science Google Scholar
First citationThompson, I. K., Mandal, S. K., Tandon, S. S., Bridson, J. N. & Park, M. K. (1996). Inorg. Chem. 35, 3117–3125.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationWang, Z., Reibenspies, J. & Martell, A. E. (1997). Inorg. Chem. 36, 629–636.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Liu, Y. Q. (2005). J. Coord. Chem. 58, 443–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, H., Peng, Z. H., Pan, Z. Q., Song, Y., Huang, Q. M. & Hu, X. L. (2007). Polyhedron, 26, 3233–3241.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds