organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Meth­oxy­benz­yl)-1-benzo­thio­phene

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and dDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: crystallography2010@gmail.com

(Received 19 May 2010; accepted 20 May 2010; online 26 May 2010)

In the title compound, C16H14OS, the dihedral angle between the benzothio­phene ring system and the benzene ring is 72.41 (12)°. A weak inter­molecular C—H⋯π inter­action from the benzene ring to the benzothio­phene ring system is observed in the crystal structure.

Related literature

For the biological activity of thio­phene derivatives, see: Bonini et al. (2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580-6583.]); Brault et al. (2005[Brault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-760.]); Isloora et al. (2010[Isloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem., 45, 825-830.]). For related structures, see: Gunasekaran et al. (2009[Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455.]); Umadevi et al. (2009[Umadevi, M., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2790.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14OS

  • Mr = 254.33

  • Monoclinic, P c

  • a = 8.0158 (6) Å

  • b = 10.8230 (9) Å

  • c = 8.1219 (6) Å

  • β = 112.563 (4)°

  • V = 650.68 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.954

  • 6033 measured reflections

  • 2946 independent reflections

  • 2721 reflections with I > 2σ(I)

  • Rint = 0.171

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.176

  • S = 1.06

  • 2946 reflections

  • 164 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1337 Friedel pairs

  • Flack parameter: −0.04 (11)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cgi 0.93 2.83 3.617 (2) 143
Symmetry code: (i) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiophene derivatives exhibit anti-HIV PR inhibitors (Bonini et al., 2005) and anti-breast cancer (Brault et al., 2005) activities. In addition, some of the benzo[b]thiophene derivatives shows significant antimicrobial and anti-inflammatory activities (Isloora et al., 2010).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structures (Gunasekaran et al., 2009; Umadevi et al., 2009). The dihedral angle between the two benzene rings is 71.93 (8)°. The C1—S1 and C8—S1 bond distances are 1.738 (3) and 1.734 (3) Å respectively, which are comparable to the literature value of 1.712 (2) Å (Allen et al., 1987).

The crystal packing is stabilized by a weak C—H···π interaction [C14—H14···Cg (-1+x, y, -1+z), Table 1; Cg is the centroid of the ring defined by the atoms C1—C6] .

Related literature top

For the biological activity of thiophene derivatives, see: Bonini et al. (2005); Brault et al. (2005); Isloora et al. (2010). For related structures, see: Gunasekaran et al. (2009); Umadevi et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 1-(bromomethyl)-4-methoxybenzene (0.7 g, 3.48 mmol) in dry 1,2-dichloroethane (20 ml) ZnBr2 (0.23 g, 1.02 mmol) and benzo[b]thiophene (0.7 g, 5.22 mmol) were added. It was then stirred at room temperature for 6 h under N2 atmosphere. The solvent was removed and the residue was quenched with ice-water (50 ml) containing 1 ml of conc. HCl, extracted with chloroform (2 × 10 ml) and dried (Na2SO4). Removal of solvent followed by column chromatographic purification (n-hexane/ethyl acetate 94:6) afforded the product as a colourless crystal.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Structure description top

Thiophene derivatives exhibit anti-HIV PR inhibitors (Bonini et al., 2005) and anti-breast cancer (Brault et al., 2005) activities. In addition, some of the benzo[b]thiophene derivatives shows significant antimicrobial and anti-inflammatory activities (Isloora et al., 2010).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structures (Gunasekaran et al., 2009; Umadevi et al., 2009). The dihedral angle between the two benzene rings is 71.93 (8)°. The C1—S1 and C8—S1 bond distances are 1.738 (3) and 1.734 (3) Å respectively, which are comparable to the literature value of 1.712 (2) Å (Allen et al., 1987).

The crystal packing is stabilized by a weak C—H···π interaction [C14—H14···Cg (-1+x, y, -1+z), Table 1; Cg is the centroid of the ring defined by the atoms C1—C6] .

For the biological activity of thiophene derivatives, see: Bonini et al. (2005); Brault et al. (2005); Isloora et al. (2010). For related structures, see: Gunasekaran et al. (2009); Umadevi et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
3-(4-Methoxybenzyl)-1-benzothiophene top
Crystal data top
C16H14OSF(000) = 268
Mr = 254.33Dx = 1.298 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 4241 reflections
a = 8.0158 (6) Åθ = 2.7–28.3°
b = 10.8230 (9) ŵ = 0.23 mm1
c = 8.1219 (6) ÅT = 295 K
β = 112.563 (4)°Block, colourless
V = 650.68 (9) Å30.25 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
2946 independent reflections
Radiation source: fine-focus sealed tube2721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.171
Detector resolution: 0 pixels mm-1θmax = 28.3°, θmin = 1.9°
ω and φ scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1214
Tmin = 0.946, Tmax = 0.954l = 1010
6033 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.1211P)2 + 0.025P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2946 reflectionsΔρmax = 0.35 e Å3
164 parametersΔρmin = 0.48 e Å3
2 restraintsAbsolute structure: Flack (1983), 1337 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (11)
Crystal data top
C16H14OSV = 650.68 (9) Å3
Mr = 254.33Z = 2
Monoclinic, PcMo Kα radiation
a = 8.0158 (6) ŵ = 0.23 mm1
b = 10.8230 (9) ÅT = 295 K
c = 8.1219 (6) Å0.25 × 0.20 × 0.20 mm
β = 112.563 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2946 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2721 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.954Rint = 0.171
6033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.176Δρmax = 0.35 e Å3
S = 1.06Δρmin = 0.48 e Å3
2946 reflectionsAbsolute structure: Flack (1983), 1337 Friedel pairs
164 parametersAbsolute structure parameter: 0.04 (11)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9043 (4)0.0721 (3)0.6766 (3)0.0493 (6)
C21.0778 (5)0.0242 (3)0.7621 (4)0.0607 (7)
H21.09690.05100.82190.073*
C31.2203 (5)0.0925 (4)0.7547 (5)0.0671 (9)
H31.33740.06270.81110.081*
C41.1926 (5)0.2048 (4)0.6648 (5)0.0616 (7)
H41.29120.24940.66340.074*
C51.0204 (4)0.2504 (3)0.5777 (4)0.0513 (6)
H51.00250.32500.51650.062*
C60.8728 (3)0.1837 (2)0.5821 (3)0.0423 (5)
C70.6844 (3)0.2155 (2)0.5029 (3)0.0433 (5)
C80.5818 (4)0.1302 (3)0.5405 (4)0.0488 (5)
H80.45680.13620.50040.059*
C90.6202 (4)0.3311 (3)0.3944 (4)0.0557 (6)
H9A0.66620.33150.30000.067*
H9B0.67160.40180.47030.067*
C100.4183 (4)0.3466 (3)0.3119 (3)0.0497 (6)
C110.3305 (4)0.4346 (3)0.3745 (4)0.0532 (6)
H110.39750.48440.47040.064*
C120.1454 (4)0.4492 (3)0.2967 (4)0.0542 (6)
H120.08990.51010.33870.065*
C130.0417 (4)0.3743 (3)0.1570 (3)0.0470 (6)
C140.1274 (4)0.2862 (3)0.0923 (3)0.0517 (6)
H140.06050.23570.00280.062*
C150.3130 (4)0.2744 (3)0.1708 (4)0.0563 (7)
H150.36900.21530.12650.068*
C160.2496 (5)0.3249 (5)0.0572 (6)0.0793 (11)
H16A0.22530.34850.15970.119*
H16B0.37460.33970.07990.119*
H16C0.22330.23860.03320.119*
O10.1408 (3)0.3948 (3)0.0910 (3)0.0653 (6)
S10.70297 (12)0.00836 (7)0.67020 (11)0.0601 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0614 (14)0.0440 (15)0.0452 (11)0.0010 (11)0.0235 (10)0.0009 (10)
C20.0703 (18)0.0529 (17)0.0552 (15)0.0134 (14)0.0201 (12)0.0062 (12)
C30.0586 (16)0.074 (2)0.0644 (16)0.0158 (15)0.0191 (13)0.0042 (15)
C40.0546 (14)0.0643 (18)0.0702 (15)0.0037 (14)0.0286 (12)0.0104 (16)
C50.0569 (14)0.0447 (14)0.0579 (13)0.0035 (11)0.0283 (11)0.0016 (10)
C60.0517 (12)0.0365 (12)0.0417 (9)0.0009 (9)0.0213 (9)0.0032 (8)
C70.0511 (11)0.0377 (12)0.0430 (10)0.0007 (10)0.0203 (8)0.0007 (9)
C80.0549 (13)0.0414 (13)0.0537 (11)0.0035 (11)0.0250 (10)0.0008 (10)
C90.0563 (14)0.0430 (15)0.0645 (14)0.0016 (12)0.0196 (11)0.0102 (12)
C100.0580 (14)0.0403 (13)0.0511 (12)0.0057 (11)0.0211 (10)0.0068 (10)
C110.0699 (16)0.0396 (14)0.0490 (11)0.0006 (12)0.0218 (11)0.0037 (10)
C120.0717 (17)0.0425 (14)0.0544 (12)0.0106 (12)0.0309 (12)0.0033 (11)
C130.0583 (14)0.0412 (13)0.0447 (10)0.0112 (10)0.0233 (10)0.0049 (9)
C140.0597 (14)0.0473 (15)0.0442 (10)0.0103 (12)0.0155 (10)0.0068 (10)
C150.0633 (16)0.0526 (17)0.0528 (12)0.0161 (12)0.0221 (11)0.0033 (11)
C160.0594 (19)0.078 (3)0.090 (2)0.0062 (16)0.0179 (17)0.014 (2)
O10.0607 (12)0.0675 (16)0.0672 (12)0.0173 (11)0.0238 (9)0.0048 (11)
S10.0723 (4)0.0462 (4)0.0659 (4)0.0059 (3)0.0312 (3)0.0108 (3)
Geometric parameters (Å, º) top
C1—C21.394 (5)C9—H9A0.9700
C1—C61.401 (4)C9—H9B0.9700
C1—S11.738 (3)C10—C151.376 (4)
C2—C31.381 (6)C10—C111.392 (4)
C2—H20.9300C11—C121.380 (4)
C3—C41.391 (6)C11—H110.9300
C3—H30.9300C12—C131.383 (4)
C4—C51.379 (5)C12—H120.9300
C4—H40.9300C13—O11.369 (4)
C5—C61.398 (4)C13—C141.391 (4)
C5—H50.9300C14—C151.381 (4)
C6—C71.438 (4)C14—H140.9300
C7—C81.347 (4)C15—H150.9300
C7—C91.503 (4)C16—O11.406 (5)
C8—S11.734 (3)C16—H16A0.9600
C8—H80.9300C16—H16B0.9600
C9—C101.504 (4)C16—H16C0.9600
C2—C1—C6121.9 (3)C10—C9—H9B108.5
C2—C1—S1127.2 (3)H9A—C9—H9B107.5
C6—C1—S1110.9 (2)C15—C10—C11117.3 (3)
C3—C2—C1117.6 (3)C15—C10—C9121.3 (3)
C3—C2—H2121.2C11—C10—C9121.5 (3)
C1—C2—H2121.2C12—C11—C10121.1 (3)
C2—C3—C4121.5 (3)C12—C11—H11119.4
C2—C3—H3119.2C10—C11—H11119.4
C4—C3—H3119.2C11—C12—C13120.7 (2)
C5—C4—C3120.6 (3)C11—C12—H12119.6
C5—C4—H4119.7C13—C12—H12119.6
C3—C4—H4119.7O1—C13—C12116.2 (2)
C4—C5—C6119.5 (3)O1—C13—C14124.9 (3)
C4—C5—H5120.2C12—C13—C14118.9 (3)
C6—C5—H5120.2C15—C14—C13119.3 (3)
C5—C6—C1118.9 (3)C15—C14—H14120.3
C5—C6—C7128.2 (2)C13—C14—H14120.3
C1—C6—C7112.9 (2)C10—C15—C14122.7 (3)
C8—C7—C6111.2 (2)C10—C15—H15118.7
C8—C7—C9127.0 (3)C14—C15—H15118.7
C6—C7—C9121.8 (2)O1—C16—H16A109.5
C7—C8—S1114.3 (2)O1—C16—H16B109.5
C7—C8—H8122.9H16A—C16—H16B109.5
S1—C8—H8122.9O1—C16—H16C109.5
C7—C9—C10114.9 (2)H16A—C16—H16C109.5
C7—C9—H9A108.5H16B—C16—H16C109.5
C10—C9—H9A108.5C13—O1—C16117.8 (3)
C7—C9—H9B108.5C8—S1—C190.76 (14)
C6—C1—C2—C31.6 (4)C6—C7—C9—C10176.5 (2)
S1—C1—C2—C3178.0 (2)C7—C9—C10—C1571.9 (4)
C1—C2—C3—C40.3 (5)C7—C9—C10—C11108.3 (3)
C2—C3—C4—C50.9 (5)C15—C10—C11—C120.6 (4)
C3—C4—C5—C60.8 (5)C9—C10—C11—C12179.2 (3)
C4—C5—C6—C10.5 (4)C10—C11—C12—C131.7 (4)
C4—C5—C6—C7179.1 (3)C11—C12—C13—O1179.0 (3)
C2—C1—C6—C51.7 (4)C11—C12—C13—C141.9 (4)
S1—C1—C6—C5177.95 (19)O1—C13—C14—C15179.9 (3)
C2—C1—C6—C7179.4 (3)C12—C13—C14—C151.1 (4)
S1—C1—C6—C70.9 (3)C11—C10—C15—C140.3 (5)
C5—C6—C7—C8178.0 (3)C9—C10—C15—C14179.9 (3)
C1—C6—C7—C80.8 (3)C13—C14—C15—C100.0 (5)
C5—C6—C7—C91.7 (4)C12—C13—O1—C16176.7 (3)
C1—C6—C7—C9179.6 (2)C14—C13—O1—C162.4 (5)
C6—C7—C8—S10.3 (3)C7—C8—S1—C10.2 (2)
C9—C7—C8—S1179.9 (2)C2—C1—S1—C8179.7 (3)
C8—C7—C9—C103.9 (4)C6—C1—S1—C80.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cgi0.932.833.617 (2)143
Symmetry code: (i) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC16H14OS
Mr254.33
Crystal system, space groupMonoclinic, Pc
Temperature (K)295
a, b, c (Å)8.0158 (6), 10.8230 (9), 8.1219 (6)
β (°) 112.563 (4)
V3)650.68 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
6033, 2946, 2721
Rint0.171
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.176, 1.06
No. of reflections2946
No. of parameters164
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.48
Absolute structureFlack (1983), 1337 Friedel pairs
Absolute structure parameter0.04 (11)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cgi0.932.833.617 (2)143
Symmetry code: (i) x1, y, z1.
 

Acknowledgements

BG thanks AMET University management, India, for their kind support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6583.  Web of Science CrossRef CAS Google Scholar
First citationBrault, L., Migianu, E., Neguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIsloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem., 45, 825–830.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmadevi, M., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2790.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds