organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-1-[(2R,5S)-5-ethyl-2-methyl-2-propyl-1,3-oxazolidin-3-yl]ethanone

aCollege of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
*Correspondence e-mail: yefei@neau.edu.cn

(Received 23 April 2010; accepted 1 May 2010; online 8 May 2010)

In the title compound, C11H19Cl2NO2, the oxazolidine ring is in an envelope conformation with the O atom forming the flap. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, forming chains.

Related literature

For general background to N-dichloro­acetyl oxazolidine, see: Agami & Couty (2004[Agami, C. & Couty, F. (2004). Eur. J. Org. Chem. 69, 677-685.]); Abu-Qare & Duncan (2002[Abu-Qare, A. W. & Duncan, H. J. (2002). Chemosphere, 48, 965-974.]); Guirado et al. (2003[Guirado, A., Andreu, R. & Galvez, J. (2003). Tetrahedron Lett. 44, 3809-3841.]); Davies & Caseley (1999[Davies, J. & Caseley, J. C. (1999). Pestic. Sci. 55, 1043-1046.]). For the bioactivity of related compounds, see: Del Buono et al. (2007[Del Buono, D., Scarponi, L. & Espen, L. (2007). Phytochemistry, 68, 2614-2618.]); Hatzios & Burgos (2004[Hatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454-467.]). For details of the synthesis, see: Fu et al. (2009[Fu, Y., Fu, H. G., Ye, F., Mao, J. D. & Wen, X. T. (2009). Synth. Commun. 39, 2454-2463.]).

[Scheme 1]

Experimental

Crystal data
  • C11H19Cl2NO2

  • Mr = 268.17

  • Orthorhombic, P 21 21 21

  • a = 6.4834 (12) Å

  • b = 10.795 (2) Å

  • c = 20.030 (4) Å

  • V = 1401.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.869, Tmax = 0.915

  • 14134 measured reflections

  • 3499 independent reflections

  • 2117 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.258

  • S = 1.02

  • 3499 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 1468 Friedels

  • Flack parameter: 0.02 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.38 3.327 (5) 163
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-dichloroacetyl oxazolidines are becoming increasingly important with their excellent biological activity (Agami & Couty, 2004; Abu-Qare & Duncan, 2002; Guirado et al., 2003; Davies & Caseley, 1999). The discovery of N-dichloroacetyl oxazolidine as a herbicide safener has drawn widespread attention in agricultural biochemistry (Del Buono et al., 2007; Hatzios & Burgos, 2004). As a part of our ongoing investigation of oxazolidine derivatives (Fu et al., 2009) we prepared the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen bonds to form one-dimensional chains (Fig. 2).

Related literature top

For general background to N-dichloroacetyl oxazolidine, see: Agami & Couty (2004); Abu-Qare & Duncan (2002); Guirado et al. (2003); Davies & Caseley (1999). For the bioactivity of related compounds, see: Del Buono et al. (2007); Hatzios & Burgos (2004). For details of the synthesis, see: Fu et al. (2009).

Experimental top

The title compound was prepared according to the literature procedure (Fu et al., 2009). The single crystal suitable for X-ray structural analysis was obtained by slow evaporation in petroleum ether and ethyl acetate at room temperature. The title enantiomer spontaneously resolved from a racemic mixture during the crystallization.

Refinement top

All H atoms were initially located in a different Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H = 0.96-0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

N-dichloroacetyl oxazolidines are becoming increasingly important with their excellent biological activity (Agami & Couty, 2004; Abu-Qare & Duncan, 2002; Guirado et al., 2003; Davies & Caseley, 1999). The discovery of N-dichloroacetyl oxazolidine as a herbicide safener has drawn widespread attention in agricultural biochemistry (Del Buono et al., 2007; Hatzios & Burgos, 2004). As a part of our ongoing investigation of oxazolidine derivatives (Fu et al., 2009) we prepared the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen bonds to form one-dimensional chains (Fig. 2).

For general background to N-dichloroacetyl oxazolidine, see: Agami & Couty (2004); Abu-Qare & Duncan (2002); Guirado et al. (2003); Davies & Caseley (1999). For the bioactivity of related compounds, see: Del Buono et al. (2007); Hatzios & Burgos (2004). For details of the synthesis, see: Fu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I), showing weak hydrogen bonds as dashed lines.
2,2-Dichloro-1-[(2R,5S)-5-ethyl-2-methyl-2-propyl- 1,3-oxazolidin-3-yl]ethanone top
Crystal data top
C11H19Cl2NO2F(000) = 568.0
Mr = 268.17Dx = 1.271 Mg m3
Dm = 1.271 Mg m3
Dm measured by not measured
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3142 reflections
a = 6.4834 (12) Åθ = 2.8–20.6°
b = 10.795 (2) ŵ = 0.45 mm1
c = 20.030 (4) ÅT = 293 K
V = 1401.8 (5) Å3Block, colourless
Z = 40.32 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3499 independent reflections
Radiation source: fine-focus sealed tube2117 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 28.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.869, Tmax = 0.915k = 1414
14134 measured reflectionsl = 2526
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.258 w = 1/[σ2(Fo2) + (0.165P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3499 reflectionsΔρmax = 0.58 e Å3
148 parametersΔρmin = 0.39 e Å3
0 restraintsAbsolute structure: Flack (1983) 1468 Friedels
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (15)
Crystal data top
C11H19Cl2NO2V = 1401.8 (5) Å3
Mr = 268.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4834 (12) ŵ = 0.45 mm1
b = 10.795 (2) ÅT = 293 K
c = 20.030 (4) Å0.32 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3499 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2117 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.915Rint = 0.058
14134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.258Δρmax = 0.58 e Å3
S = 1.02Δρmin = 0.39 e Å3
3499 reflectionsAbsolute structure: Flack (1983) 1468 Friedels
148 parametersAbsolute structure parameter: 0.02 (15)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5074 (7)0.9192 (4)0.2071 (2)0.0675 (11)
H10.49660.83650.22700.081*
C20.5889 (7)1.0103 (3)0.2598 (2)0.0638 (10)
C30.7886 (9)0.8326 (4)0.3065 (3)0.0789 (13)
H3A0.67840.77580.31810.095*
H3B0.84540.80890.26360.095*
C40.9470 (13)0.8334 (4)0.3575 (3)0.105 (2)
H41.06270.85940.32930.126*
C51.0407 (13)0.7301 (5)0.3866 (4)0.122 (3)
H5A1.09220.68010.35000.147*
H5B0.93060.68280.40720.147*
C61.2052 (13)0.7357 (6)0.4353 (3)0.111 (2)
H6A1.33580.73620.41270.166*
H6B1.19760.66470.46400.166*
H6C1.19150.80980.46140.166*
C70.8170 (7)1.0342 (4)0.3589 (2)0.0680 (10)
C80.9703 (10)1.1251 (5)0.3287 (3)0.0925 (16)
H8A1.06351.15330.36270.139*
H8B0.89731.19460.31040.139*
H8C1.04701.08470.29390.139*
C90.6750 (10)1.1009 (5)0.4051 (3)0.0875 (14)
H9A0.75501.13100.44270.105*
H9B0.62051.17270.38190.105*
C100.4982 (11)1.0277 (6)0.4315 (3)0.1013 (18)
H10A0.54810.94940.44880.122*
H10B0.40231.01030.39550.122*
C110.3855 (15)1.0989 (8)0.4874 (4)0.127 (3)
H11A0.47811.11190.52420.190*
H11B0.26881.05160.50230.190*
H11C0.33961.17750.47070.190*
Cl10.6885 (3)0.91462 (14)0.14073 (7)0.0996 (5)
Cl20.2642 (2)0.96549 (13)0.17873 (9)0.1008 (5)
N10.7143 (5)0.9597 (3)0.30507 (18)0.0629 (8)
O10.9265 (6)0.9417 (3)0.39428 (17)0.0793 (9)
O20.5407 (6)1.1193 (3)0.2580 (2)0.0859 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.072 (2)0.0401 (18)0.090 (3)0.0031 (17)0.013 (2)0.0002 (18)
C20.071 (2)0.0396 (17)0.081 (3)0.0077 (17)0.000 (2)0.0023 (17)
C30.093 (3)0.0354 (18)0.108 (3)0.014 (2)0.021 (3)0.0090 (18)
C40.154 (5)0.046 (2)0.114 (4)0.033 (3)0.043 (4)0.013 (3)
C50.149 (6)0.059 (3)0.160 (6)0.031 (4)0.071 (5)0.020 (3)
C60.127 (5)0.070 (3)0.134 (5)0.010 (4)0.031 (4)0.013 (3)
C70.084 (3)0.0379 (17)0.082 (3)0.0039 (18)0.010 (2)0.0029 (16)
C80.101 (4)0.052 (2)0.124 (4)0.020 (3)0.013 (3)0.003 (3)
C90.109 (4)0.060 (3)0.093 (3)0.006 (3)0.003 (3)0.010 (2)
C100.105 (4)0.075 (3)0.124 (5)0.010 (3)0.006 (3)0.000 (3)
C110.149 (6)0.124 (6)0.107 (4)0.021 (5)0.035 (4)0.005 (4)
Cl10.1169 (11)0.0780 (8)0.1038 (9)0.0063 (8)0.0152 (9)0.0185 (7)
Cl20.0899 (8)0.0761 (8)0.1365 (12)0.0154 (7)0.0350 (8)0.0093 (7)
N10.0715 (19)0.0298 (13)0.087 (2)0.0036 (14)0.0060 (17)0.0042 (13)
O10.102 (2)0.0413 (14)0.095 (2)0.0055 (15)0.0232 (19)0.0079 (14)
O20.114 (3)0.0338 (13)0.110 (2)0.0152 (16)0.023 (2)0.0013 (14)
Geometric parameters (Å, º) top
C1—C21.536 (6)C6—H6C0.9600
C1—Cl21.750 (4)C7—O11.416 (5)
C1—Cl11.775 (5)C7—C91.491 (7)
C1—H10.9800C7—N11.501 (5)
C2—O21.218 (5)C7—C81.523 (7)
C2—N11.335 (6)C8—H8A0.9600
C3—C41.448 (8)C8—H8B0.9600
C3—N11.454 (5)C8—H8C0.9600
C3—H3A0.9700C9—C101.490 (9)
C3—H3B0.9700C9—H9A0.9700
C4—O11.388 (6)C9—H9B0.9700
C4—C51.397 (7)C10—C111.542 (9)
C4—H40.9800C10—H10A0.9700
C5—C61.446 (10)C10—H10B0.9700
C5—H5A0.9700C11—H11A0.9600
C5—H5B0.9700C11—H11B0.9600
C6—H6A0.9600C11—H11C0.9600
C6—H6B0.9600
C2—C1—Cl2110.5 (3)O1—C7—N1101.8 (3)
C2—C1—Cl1107.8 (3)C9—C7—N1115.5 (4)
Cl2—C1—Cl1111.1 (3)O1—C7—C8109.0 (4)
C2—C1—H1109.1C9—C7—C8109.8 (4)
Cl2—C1—H1109.1N1—C7—C8110.5 (4)
Cl1—C1—H1109.1C7—C8—H8A109.5
O2—C2—N1124.9 (4)C7—C8—H8B109.5
O2—C2—C1120.7 (4)H8A—C8—H8B109.5
N1—C2—C1114.5 (3)C7—C8—H8C109.5
C4—C3—N1104.1 (4)H8A—C8—H8C109.5
C4—C3—H3A110.9H8B—C8—H8C109.5
N1—C3—H3A110.9C10—C9—C7116.0 (5)
C4—C3—H3B110.9C10—C9—H9A108.3
N1—C3—H3B110.9C7—C9—H9A108.3
H3A—C3—H3B108.9C10—C9—H9B108.3
O1—C4—C5119.5 (5)C7—C9—H9B108.3
O1—C4—C3108.1 (4)H9A—C9—H9B107.4
C5—C4—C3126.8 (5)C9—C10—C11111.0 (6)
O1—C4—H497.9C9—C10—H10A109.4
C5—C4—H497.9C11—C10—H10A109.4
C3—C4—H497.9C9—C10—H10B109.4
C4—C5—C6124.7 (6)C11—C10—H10B109.4
C4—C5—H5A106.2H10A—C10—H10B108.0
C6—C5—H5A106.2C10—C11—H11A109.5
C4—C5—H5B106.2C10—C11—H11B109.5
C6—C5—H5B106.2H11A—C11—H11B109.5
H5A—C5—H5B106.3C10—C11—H11C109.5
C5—C6—H6A109.5H11A—C11—H11C109.5
C5—C6—H6B109.5H11B—C11—H11C109.5
H6A—C6—H6B109.5C2—N1—C3127.0 (3)
C5—C6—H6C109.5C2—N1—C7122.6 (3)
H6A—C6—H6C109.5C3—N1—C7110.1 (3)
H6B—C6—H6C109.5C4—O1—C7112.1 (3)
O1—C7—C9109.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.383.327 (5)163
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H19Cl2NO2
Mr268.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.4834 (12), 10.795 (2), 20.030 (4)
V3)1401.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.32 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.869, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
14134, 3499, 2117
Rint0.058
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.258, 1.02
No. of reflections3499
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.39
Absolute structureFlack (1983) 1468 Friedels
Absolute structure parameter0.02 (15)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.383.327 (5)163
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank the Heilongjiang Province Foundation for Young Scholars (QC2009C44), the Innovation Foundation for Young Scholars of Harbin (No.2007RFQXN017),the China Postdoctoral Science Foundation (20080430951), the Heilongjiang Province Postdoctoral Science Foundation and the Northeast Agricultural University Doctoral Foundation for generously supporting this study.

References

First citationAbu-Qare, A. W. & Duncan, H. J. (2002). Chemosphere, 48, 965–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAgami, C. & Couty, F. (2004). Eur. J. Org. Chem. 69, 677–685.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavies, J. & Caseley, J. C. (1999). Pestic. Sci. 55, 1043–1046.  CrossRef CAS Google Scholar
First citationDel Buono, D., Scarponi, L. & Espen, L. (2007). Phytochemistry, 68, 2614–2618.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, Y., Fu, H. G., Ye, F., Mao, J. D. & Wen, X. T. (2009). Synth. Commun. 39, 2454–2463.  Web of Science CrossRef CAS Google Scholar
First citationGuirado, A., Andreu, R. & Galvez, J. (2003). Tetrahedron Lett. 44, 3809–3841.  Web of Science CrossRef CAS Google Scholar
First citationHatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454–467.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds