organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-{1-[(Z)-3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene]ethyl­amino}-3-phenyl­propanoate

aDepartment of Basic Science, Tianjin Agriculturial College, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China, and bDepartment of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: zhuhualing2004@126.com

(Received 15 November 2009; accepted 11 May 2010; online 15 May 2010)

The mol­ecule of the title compound, C22H23N3O3, exists in the enamine–keto form. A strong intra­molecular N—H⋯O hydrogen bond occurs, generating an S(6) ring. The dihedral angle between the heterocycle and the adjacent phenyl ring is 3.75 (15)°.

Related literature

For the anti­bacterial activity of Schiff bases derived from 4-acyl-5-pyrazolones and metal complexes, see: Li et al. (1997[Li, J. Z., Yu, W. J. & Du, X. Y. (1997). Chin. J. Appl. Chem. 14, 98-100.], 2004[Li, J. Z., Jiang, L. & An, Y. M. (2004). Chin. J. Appl. Chem. 21, 150-153.]). For the biological activity of amino acid esters, see: Xiong et al. (1993[Xiong, G. H., Yang, Z. M. & Guo, A. L. (1993). Fine Chem. 6, 1-3.]). For related structures, see: Wang et al. (2003[Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430-o432.]); Zhang et al. (2004[Zhang, X., Zhu, H., Xu, H. & Dong, M. (2004). Acta Cryst. E60, o1157-o1158.], 2010[Zhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273.]); Zhu et al. (2005[Zhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387-o2388.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23N3O3

  • Mr = 377.43

  • Monoclinic, P 21

  • a = 10.940 (1) Å

  • b = 7.2105 (7) Å

  • c = 12.867 (1) Å

  • β = 92.718 (2)°

  • V = 1013.84 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.28 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000\bbr00) Tmin = 0.977, Tmax = 0.988

  • 6036 measured reflections

  • 2366 independent reflections

  • 1239 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.01

  • 2366 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.86 1.98 2.695 (3) 141

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have been studied widely for their high antibacterial activation [Li et al., 1997, 2004]. Since amino acid esters also possess good antibacterial and biological activations (Xiong et al., 1993), several Structures of Schiff bases derived from 4-acyl-5-pyrazolones and amino acid esters and closely related to the title compound have been reported [Zhu et al., 2005; Zhang et al., 2010]. We report the the crystal structure of the title compound.

In the molecule of the title compound, (Fig.1) atoms O1, C7, C8, C11 and atom N3 form a plane, the largest deviation being 0.024 (2) Å for atom C11. The dihedral angle between this mean plane and the pyrazolone ring of PMAP is 1.44 (3)°, indicating that they are essentially coplanar, as seen in Ethyl 2-{[(1Z)-(3- methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylidene) (p-tolyl)methyl]amino}-3-phenylpropanoate (1.52 (4)°; Zhang et al., 2010). The bond lengths within this part of the molecular lie between classical single-and double-bond lengths, indicating extensive conjugation. Atoms N3, C13, C14 and O2 are not coplanar, the torsion angle is -39.0 (4)°, similar to some other 4-acylpyrazolone schiff bases (Zhang et al. 2004; Wang et al. 2003). The bond lengths in this part of the molecular indicate that only C14—O2 is classical double bond, other bonds are classical single bonds. A strong intramolecular hydrogen bond N3—H3···O1 is observed (Table 1 & Fig. 1), stabilizing to an enamine–keto form.

Related literature top

For the antibacterial activity of Schiff bases derived from 4-acyl-5-pyrazolones and metal complexes, see: Li et al. (1997, 2004). For the biological activity of amino acid esters, see: Xiong et al. (1993). For related structures, see: Wang et al. (2003); Zhang et al. (2004, 2010); Zhu et al. (2005).

Experimental top

The title compound was synthesized by refluxing the mixture of HPMAP (15 m mol) and phenylalanine methyl ester (15m mol) in ethanol (100 ml) over a steam bath for about 4 h, then the solution was cooled down to room temperature. After four days, white block was obtained and dried in air. The product was recrystallized from ethanol which afforded colorless and acerate crystals suitable for X-ray analysis.

Refinement top

In the absence of significant anomalous scattering effect, 1127 Friedel pairs were merged. All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for methylene, 0.98 Å for methyne and 0.96 Å for the methyl H atoms. Uiso(H)= 1.2 Ueq(C) for aryl, methylene and methyne, and 1.5Ueq(C) for methyl H atoms.

Structure description top

The Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have been studied widely for their high antibacterial activation [Li et al., 1997, 2004]. Since amino acid esters also possess good antibacterial and biological activations (Xiong et al., 1993), several Structures of Schiff bases derived from 4-acyl-5-pyrazolones and amino acid esters and closely related to the title compound have been reported [Zhu et al., 2005; Zhang et al., 2010]. We report the the crystal structure of the title compound.

In the molecule of the title compound, (Fig.1) atoms O1, C7, C8, C11 and atom N3 form a plane, the largest deviation being 0.024 (2) Å for atom C11. The dihedral angle between this mean plane and the pyrazolone ring of PMAP is 1.44 (3)°, indicating that they are essentially coplanar, as seen in Ethyl 2-{[(1Z)-(3- methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylidene) (p-tolyl)methyl]amino}-3-phenylpropanoate (1.52 (4)°; Zhang et al., 2010). The bond lengths within this part of the molecular lie between classical single-and double-bond lengths, indicating extensive conjugation. Atoms N3, C13, C14 and O2 are not coplanar, the torsion angle is -39.0 (4)°, similar to some other 4-acylpyrazolone schiff bases (Zhang et al. 2004; Wang et al. 2003). The bond lengths in this part of the molecular indicate that only C14—O2 is classical double bond, other bonds are classical single bonds. A strong intramolecular hydrogen bond N3—H3···O1 is observed (Table 1 & Fig. 1), stabilizing to an enamine–keto form.

For the antibacterial activity of Schiff bases derived from 4-acyl-5-pyrazolones and metal complexes, see: Li et al. (1997, 2004). For the biological activity of amino acid esters, see: Xiong et al. (1993). For related structures, see: Wang et al. (2003); Zhang et al. (2004, 2010); Zhu et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Methyl 2-{1-[(Z)-3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol- 4-ylidene]ethylamino}-3-phenylpropanoate top
Crystal data top
C22H23N3O3F(000) = 400
Mr = 377.43Dx = 1.236 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.940 (1) ÅCell parameters from 1220 reflections
b = 7.2105 (7) Åθ = 3.2–22.4°
c = 12.867 (1) ŵ = 0.08 mm1
β = 92.718 (2)°T = 296 K
V = 1013.84 (16) Å3Block, colorless
Z = 20.28 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2366 independent reflections
Radiation source: fine-focus sealed tube1239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.6°
φ and ω scansh = 1311
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000\bbr00)
k = 99
Tmin = 0.977, Tmax = 0.988l = 1316
6036 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.096H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0409P)2]
where P = (Fo2 + 2Fc2)/3
2366 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.08 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C22H23N3O3V = 1013.84 (16) Å3
Mr = 377.43Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.940 (1) ŵ = 0.08 mm1
b = 7.2105 (7) ÅT = 296 K
c = 12.867 (1) Å0.28 × 0.12 × 0.10 mm
β = 92.718 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2366 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000\bbr00)
1239 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.988Rint = 0.028
6036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.096H-atom parameters constrained
S = 1.01Δρmax = 0.08 e Å3
2366 reflectionsΔρmin = 0.16 e Å3
256 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69537 (16)0.7004 (4)0.63222 (13)0.0812 (6)
O20.9385 (2)0.5317 (4)0.4573 (2)0.0951 (8)
O30.9296 (2)0.4530 (3)0.28897 (18)0.0818 (7)
N10.49129 (18)0.7209 (4)0.67625 (16)0.0594 (6)
N20.37536 (19)0.7237 (4)0.62394 (18)0.0662 (6)
N30.7085 (2)0.6887 (4)0.42371 (17)0.0681 (7)
H30.74080.68140.48580.082*
C10.3903 (3)0.7353 (6)0.8383 (2)0.0798 (10)
H10.31560.74720.80120.096*
C20.3948 (4)0.7310 (7)0.9457 (3)0.1043 (12)
H20.32260.73920.98090.125*
C30.5037 (5)0.7148 (8)1.0007 (3)0.1151 (14)
H3A0.50600.71141.07300.138*
C40.6103 (3)0.7035 (8)0.9487 (2)0.1075 (13)
H40.68490.69410.98600.129*
C50.6072 (3)0.7060 (6)0.8416 (2)0.0853 (10)
H50.67940.69710.80660.102*
C60.4968 (3)0.7219 (5)0.7866 (2)0.0626 (7)
C70.5836 (2)0.7091 (5)0.6073 (2)0.0608 (7)
C80.5237 (2)0.7100 (5)0.5063 (2)0.0534 (6)
C90.3959 (2)0.7185 (5)0.5250 (2)0.0595 (7)
C100.2866 (2)0.7155 (6)0.4494 (2)0.0834 (10)
H10A0.21300.71530.48710.125*
H10B0.28920.60590.40720.125*
H10C0.28800.82330.40560.125*
C110.5879 (2)0.7059 (5)0.4158 (2)0.0563 (7)
C120.5269 (2)0.7185 (6)0.3096 (2)0.0727 (8)
H12A0.52090.59690.27940.109*
H12B0.57410.79710.26660.109*
H12C0.44630.76970.31460.109*
C130.7929 (2)0.6804 (5)0.3398 (2)0.0646 (8)
H130.74950.63750.27590.077*
C140.8937 (3)0.5450 (5)0.3710 (3)0.0677 (9)
C151.0389 (3)0.3383 (6)0.3056 (3)0.1081 (14)
H15A1.02810.25590.36310.162*
H15B1.10860.41640.32060.162*
H15C1.05180.26700.24410.162*
C160.8488 (3)0.8723 (5)0.3216 (3)0.0724 (9)
H16A0.78330.96260.31310.087*
H16B0.89910.90710.38260.087*
C170.9252 (3)0.8793 (4)0.2280 (3)0.0645 (8)
C181.0502 (3)0.8632 (5)0.2357 (3)0.0886 (11)
H181.08900.84660.30090.106*
C191.1202 (4)0.8709 (6)0.1491 (5)0.1149 (16)
H191.20490.85960.15610.138*
C201.0639 (5)0.8953 (7)0.0535 (4)0.1186 (16)
H201.11040.90080.00510.142*
C210.9411 (5)0.9114 (7)0.0431 (3)0.1104 (14)
H210.90300.92880.02230.133*
C220.8718 (3)0.9019 (5)0.1308 (3)0.0847 (11)
H220.78710.91110.12310.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0527 (12)0.1241 (19)0.0665 (13)0.0042 (16)0.0012 (9)0.0002 (17)
O20.0909 (17)0.113 (2)0.0801 (18)0.0257 (16)0.0114 (13)0.0023 (16)
O30.0824 (16)0.0755 (15)0.0886 (19)0.0130 (13)0.0146 (13)0.0103 (14)
N10.0538 (13)0.0666 (16)0.0580 (15)0.0033 (16)0.0047 (11)0.0003 (17)
N20.0544 (14)0.0725 (17)0.0719 (16)0.0014 (15)0.0045 (12)0.0012 (19)
N30.0611 (15)0.088 (2)0.0548 (14)0.0066 (16)0.0041 (11)0.0009 (17)
C10.077 (2)0.092 (3)0.071 (2)0.000 (2)0.0145 (16)0.010 (2)
C20.113 (3)0.128 (4)0.075 (3)0.004 (3)0.029 (2)0.012 (3)
C30.138 (3)0.148 (4)0.060 (2)0.007 (4)0.009 (2)0.007 (3)
C40.105 (3)0.150 (4)0.066 (2)0.003 (4)0.004 (2)0.002 (4)
C50.076 (2)0.115 (3)0.064 (2)0.001 (3)0.0007 (16)0.001 (3)
C60.0731 (19)0.0571 (18)0.0586 (19)0.0032 (19)0.0125 (15)0.001 (2)
C70.0567 (18)0.0596 (19)0.0664 (18)0.001 (2)0.0063 (15)0.001 (2)
C80.0504 (15)0.0552 (17)0.0546 (16)0.0013 (17)0.0036 (13)0.001 (2)
C90.0558 (17)0.0545 (17)0.0681 (19)0.0005 (18)0.0007 (13)0.002 (2)
C100.0553 (17)0.110 (3)0.084 (2)0.002 (2)0.0061 (14)0.004 (3)
C110.0563 (18)0.0512 (17)0.0609 (18)0.0009 (18)0.0023 (13)0.000 (2)
C120.0757 (19)0.080 (2)0.0625 (18)0.009 (2)0.0011 (14)0.002 (2)
C130.0619 (18)0.076 (2)0.0568 (18)0.0028 (18)0.0082 (14)0.0025 (18)
C140.057 (2)0.066 (2)0.080 (3)0.0016 (17)0.0078 (19)0.000 (2)
C150.091 (3)0.089 (3)0.146 (4)0.037 (2)0.018 (2)0.006 (3)
C160.076 (2)0.069 (2)0.073 (2)0.0084 (18)0.0089 (18)0.0011 (19)
C170.060 (2)0.064 (2)0.069 (2)0.0048 (17)0.0073 (17)0.0016 (18)
C180.073 (3)0.092 (3)0.102 (3)0.003 (2)0.008 (2)0.000 (2)
C190.072 (3)0.116 (4)0.158 (5)0.002 (3)0.026 (3)0.001 (4)
C200.115 (4)0.107 (4)0.139 (5)0.001 (3)0.060 (3)0.007 (3)
C210.121 (4)0.127 (4)0.086 (3)0.011 (3)0.027 (3)0.014 (3)
C220.074 (2)0.101 (3)0.079 (3)0.010 (2)0.010 (2)0.004 (2)
Geometric parameters (Å, º) top
O1—C71.251 (3)C10—H10B0.9600
O2—C141.197 (4)C10—H10C0.9600
O3—C141.322 (4)C11—C121.495 (3)
O3—C151.462 (4)C12—H12A0.9600
N1—C71.378 (3)C12—H12B0.9600
N1—N21.407 (3)C12—H12C0.9600
N1—C61.418 (3)C13—C141.512 (4)
N2—C91.304 (3)C13—C161.535 (4)
N3—C111.325 (3)C13—H130.9800
N3—C131.454 (3)C15—H15A0.9600
N3—H30.8600C15—H15B0.9600
C1—C61.372 (4)C15—H15C0.9600
C1—C21.382 (4)C16—C171.499 (4)
C1—H10.9300C16—H16A0.9700
C2—C31.362 (5)C16—H16B0.9700
C2—H20.9300C17—C221.365 (4)
C3—C41.374 (5)C17—C181.371 (4)
C3—H3A0.9300C18—C191.382 (5)
C4—C51.376 (4)C18—H180.9300
C4—H40.9300C19—C201.361 (5)
C5—C61.376 (4)C19—H190.9300
C5—H50.9300C20—C211.349 (5)
C7—C81.427 (3)C20—H200.9300
C8—C111.388 (3)C21—C221.390 (5)
C8—C91.431 (3)C21—H210.9300
C9—C101.506 (3)C22—H220.9300
C10—H10A0.9600
C14—O3—C15116.0 (3)C11—C12—H12B109.5
C7—N1—N2111.3 (2)H12A—C12—H12B109.5
C7—N1—C6130.4 (2)C11—C12—H12C109.5
N2—N1—C6118.2 (2)H12A—C12—H12C109.5
C9—N2—N1105.9 (2)H12B—C12—H12C109.5
C11—N3—C13127.7 (2)N3—C13—C14108.1 (3)
C11—N3—H3116.1N3—C13—C16110.4 (3)
C13—N3—H3116.1C14—C13—C16109.4 (2)
C6—C1—C2119.5 (3)N3—C13—H13109.7
C6—C1—H1120.2C14—C13—H13109.7
C2—C1—H1120.2C16—C13—H13109.7
C3—C2—C1120.7 (3)O2—C14—O3125.2 (3)
C3—C2—H2119.7O2—C14—C13124.0 (3)
C1—C2—H2119.7O3—C14—C13110.7 (3)
C2—C3—C4119.6 (3)O3—C15—H15A109.5
C2—C3—H3A120.2O3—C15—H15B109.5
C4—C3—H3A120.2H15A—C15—H15B109.5
C3—C4—C5120.4 (3)O3—C15—H15C109.5
C3—C4—H4119.8H15A—C15—H15C109.5
C5—C4—H4119.8H15B—C15—H15C109.5
C6—C5—C4119.7 (3)C17—C16—C13113.2 (3)
C6—C5—H5120.2C17—C16—H16A108.9
C4—C5—H5120.2C13—C16—H16A108.9
C1—C6—C5120.1 (3)C17—C16—H16B108.9
C1—C6—N1119.3 (3)C13—C16—H16B108.9
C5—C6—N1120.6 (3)H16A—C16—H16B107.7
O1—C7—N1125.1 (2)C22—C17—C18117.3 (3)
O1—C7—C8129.4 (2)C22—C17—C16120.6 (3)
N1—C7—C8105.5 (2)C18—C17—C16122.1 (3)
C11—C8—C7122.3 (2)C17—C18—C19121.8 (4)
C11—C8—C9132.8 (2)C17—C18—H18119.1
C7—C8—C9104.9 (2)C19—C18—H18119.1
N2—C9—C8112.4 (2)C20—C19—C18119.3 (4)
N2—C9—C10117.6 (2)C20—C19—H19120.3
C8—C9—C10130.0 (2)C18—C19—H19120.3
C9—C10—H10A109.5C21—C20—C19120.5 (4)
C9—C10—H10B109.5C21—C20—H20119.8
H10A—C10—H10B109.5C19—C20—H20119.8
C9—C10—H10C109.5C20—C21—C22119.6 (4)
H10A—C10—H10C109.5C20—C21—H21120.2
H10B—C10—H10C109.5C22—C21—H21120.2
N3—C11—C8118.6 (2)C17—C22—C21121.6 (3)
N3—C11—C12118.4 (2)C17—C22—H22119.2
C8—C11—C12122.9 (2)C21—C22—H22119.2
C11—C12—H12A109.5
C7—N1—N2—C91.6 (4)C7—C8—C9—C10177.3 (4)
C6—N1—N2—C9178.8 (3)C13—N3—C11—C8179.6 (3)
C6—C1—C2—C30.4 (7)C13—N3—C11—C120.2 (5)
C1—C2—C3—C40.3 (9)C7—C8—C11—N34.4 (5)
C2—C3—C4—C50.8 (9)C9—C8—C11—N3176.7 (3)
C3—C4—C5—C60.6 (8)C7—C8—C11—C12176.1 (3)
C2—C1—C6—C50.6 (6)C9—C8—C11—C122.7 (6)
C2—C1—C6—N1178.2 (4)C11—N3—C13—C14143.2 (3)
C4—C5—C6—C10.1 (7)C11—N3—C13—C1697.2 (4)
C4—C5—C6—N1178.7 (4)C15—O3—C14—O25.2 (5)
C7—N1—C6—C1179.9 (4)C15—O3—C14—C13171.1 (3)
N2—N1—C6—C13.4 (5)N3—C13—C14—O239.0 (4)
C7—N1—C6—C51.2 (6)C16—C13—C14—O281.2 (4)
N2—N1—C6—C5175.4 (3)N3—C13—C14—O3144.8 (3)
N2—N1—C7—O1178.4 (3)C16—C13—C14—O395.1 (3)
C6—N1—C7—O11.7 (6)N3—C13—C16—C17173.2 (3)
N2—N1—C7—C81.8 (4)C14—C13—C16—C1768.1 (4)
C6—N1—C7—C8178.6 (3)C13—C16—C17—C2282.0 (4)
O1—C7—C8—C111.9 (6)C13—C16—C17—C1897.8 (4)
N1—C7—C8—C11177.8 (3)C22—C17—C18—C190.6 (5)
O1—C7—C8—C9179.0 (4)C16—C17—C18—C19179.6 (4)
N1—C7—C8—C91.3 (4)C17—C18—C19—C200.0 (7)
N1—N2—C9—C80.7 (4)C18—C19—C20—C210.1 (7)
N1—N2—C9—C10178.6 (3)C19—C20—C21—C220.4 (7)
C11—C8—C9—N2178.6 (4)C18—C17—C22—C211.1 (6)
C7—C8—C9—N20.4 (4)C16—C17—C22—C21179.1 (4)
C11—C8—C9—C103.8 (7)C20—C21—C22—C171.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.861.982.695 (3)141

Experimental details

Crystal data
Chemical formulaC22H23N3O3
Mr377.43
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.940 (1), 7.2105 (7), 12.867 (1)
β (°) 92.718 (2)
V3)1013.84 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000\bbr00)
Tmin, Tmax0.977, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6036, 2366, 1239
Rint0.028
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.01
No. of reflections2366
No. of parameters256
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.08, 0.16

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.861.982.695 (3)140.5
 

Acknowledgements

The authors thank the Science Development Committee of Tianjin Agricultural College for partial funding (research grant No. 2007029).

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, J. Z., Jiang, L. & An, Y. M. (2004). Chin. J. Appl. Chem. 21, 150–153.  CAS Google Scholar
First citationLi, J. Z., Yu, W. J. & Du, X. Y. (1997). Chin. J. Appl. Chem. 14, 98–100.  CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, G. H., Yang, Z. M. & Guo, A. L. (1993). Fine Chem. 6, 1–3.  Google Scholar
First citationZhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X., Zhu, H., Xu, H. & Dong, M. (2004). Acta Cryst. E60, o1157–o1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387–o2388.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds