organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Melaminium perchlorate monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zmmzyahfdzg@126.com

(Received 24 April 2010; accepted 19 May 2010; online 26 May 2010)

In the title hydrated salt, 2,4,6-triamino-1,3,5-triazin-1-ium perchlorate monohydrate, C3H7N6+·ClO4·H2O, the constituents are linked via hydrogen bonds of the O—H⋯O, N—H⋯O, N—H⋯N and N—H⋯Cl types. All the H atoms of the melaminium cation are involved in the hydrogen bonds. The melaminium residues are inter­connected by four N—H⋯N hydrogen bonds, forming chains parallel to (111). The ribbons are inter­connected by other hydrogen bonds as well as by ππ inter­actions [centroid–centroid distance = 3.8097 (7) Å].

Related literature

For similar organic acid–base compounds, see: Martin & Pinkerton (1995[Martin, A. & Pinkerton, A. A. (1995). Acta Cryst. C51, 2174-2177.]); Perpétuo & Janczak (2006[Perpétuo, G. J. & Janczak, J. (2006). Acta Cryst. C62, o372-o375.]). For their ferroelectric properties, see: Hang et al. (2009[Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026-2029.]), Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]). For impedance studies, see; Uthrakumar et al. (2008[Uthrakumar, R., Vesta, C., Raj, C. J., Dinakaran, S., Dhas, R. C. & Das, S. J. (2008). Cryst. Res. Technol. 43, 428-432.]).

[Scheme 1]

Experimental

Crystal data
  • C3H7N6+·ClO4·H2O

  • Mr = 244.61

  • Triclinic, [P \overline 1]

  • a = 5.654 (4) Å

  • b = 7.553 (7) Å

  • c = 11.893 (10) Å

  • α = 102.72 (4)°

  • β = 94.58 (3)°

  • γ = 110.78 (2)°

  • V = 456.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.916, Tmax = 0.916

  • 4902 measured reflections

  • 2051 independent reflections

  • 1719 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.091

  • S = 0.90

  • 2051 reflections

  • 163 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O4 0.85 (1) 2.16 (1) 2.960 (3) 158 (2)
O5—H5B⋯O5i 0.85 (1) 2.64 (2) 3.081 (3) 114 (2)
O5—H5A⋯O3ii 0.84 (1) 2.16 (1) 2.883 (3) 144 (2)
O5—H5A⋯O2iii 0.84 (1) 2.38 (2) 2.867 (3) 117 (1)
N1—H1B⋯O1iv 0.86 (1) 2.19 (1) 2.890 (2) 139 (2)
N1—H1B⋯O5iv 0.86 (1) 2.48 (2) 3.146 (3) 135 (2)
N1—H1A⋯N6v 0.86 (1) 2.14 (1) 2.998 (3) 178 (2)
N2—H2B⋯O4ii 0.86 (1) 2.31 (1) 3.086 (3) 151 (2)
N2—H2B⋯O2vi 0.86 (1) 2.56 (2) 3.108 (3) 123 (2)
N2—H2A⋯O2iii 0.86 (1) 2.20 (1) 2.979 (3) 150 (2)
N2—H2A⋯Cl1iii 0.86 (1) 2.99 (1) 3.792 (3) 157 (2)
N3—H3B⋯N5vii 0.85 (1) 2.23 (1) 3.084 (3) 173 (2)
N3—H3A⋯O1viii 0.86 (1) 2.19 (1) 3.029 (3) 168 (2)
N4—H4A⋯O5iv 0.84 (1) 1.90 (1) 2.723 (2) 168 (2)
Symmetry codes: (i) -x+3, -y+2, -z+2; (ii) -x+2, -y+2, -z+2; (iii) x, y-1, z; (iv) x-1, y, z; (v) -x+1, -y+2, -z+1; (vi) x-1, y-1, z; (vii) -x+2, -y+1, -z+1; (viii) -x+2, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The melamine molecule and its organic and inorganic complexes or salts were widely researched by ancient Chemists (Martin et al. 1995; Perpétuo & Janczak, 2006). This study is a part of systematic investigation of dielectric ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Hang et al., 2009) and organic inorganic hybrid. Melaminium monoperchlorate monohydrate has no dielectric disuniform from 90 K to 430 K, (m.p. > 470 K).

The asymmetric unit of the title compound is composed of cationic (C3H7N6+), anionic (ClO4-) and one dissociative water molecular(Fig 1). The melaminium cation is protonated at only one melamine ring N atom. The six-membered aromatic ring of melaminium residues exhibit distortions from the regular hexagonal form. The internal C—N—C angle at the protonated N atom(119.41 (14) °) is greater than the other two C—N—C angles of the ring(115.45 (14) ° and 115.48 (14) °) and the internal N—C—N angles involving the nonprotonated ring N atoms (126.09 (15) °) are obviously greater than those containing protonated and non-protonated N atoms(121.65 (15) ° and 121.88 (15) °).

Fig. 2 shows a view down the c axis. The melaminium cations are interconnected by four N—H···N hydrogen bonds, forming ribbons parallel to (1 1 1). The ribbons are interconnected by other hydrogen bonds as well as by π-electron ring - π-electron ring interactions with the distance between the centroids of the neighbour melaminium rings (1-x,1-y,1-z) equal to 3.8097 Å. Melamine and its derivatives and organic and inorganic complexes or salts can develop well defined non-covalent supramolecular architectures via multiple hydrogen bonds. The hydrogen bonds are summarized in Tab. 1. The H atom of the protonated ring N atom (H4a) is donated to the water molecule, being involved in a strong N—H···O hydrogen bond. The other amine H atoms are involved in N—H···O, N—H···N and N—H···Cl hydrogen bonds. ClO4- anions take part in electrostatics equilibrium with the melaminium cations. They are also involved in N—H···O, O—H···O, and N—H···Cl hydrogen bonds.

Related literature top

For similar organic acid–base compounds, see: Martin & Pinkerton (1995); Perpétuo & Janczak (2006). For ferroelectric properties [of what? Are these references relevant to the title compound?], see: Hang et al. (2009), Li et al. (2008). For impedance studies, see; Uthrakumar et al. (2008).

Experimental top

Single crystals of melaminium monoperchlorate monohydrate are prepared by slow evaporation at room temperature of an water solution of melamine and perchloric acid.

Dielectric studies (capacitance and dielectric loss measurements) were performed on powder samples which have been pressed into tablets on the surfaces of which a conducting carbon glue was deposited. The automatic impedance TongHui2828 Analyzer has been used (Uthrakumar et al., 2008). In the measured temperature ranges (90 K to 450 K, m.p. > 470 K), the title structure showed no dielectric disuniform.

Refinement top

All the hydrogens were discernible in the difference electron density maps. The positions of the H atoms of the melamine cations were refined using a riding model with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). The coordinates if the water hydrogens have been refined under restrains 0.84 Å; Uiso(H) = 1.2Ueq(O). (The constrained and the restrained values fit well to the trial refinement with the freely refined hydrogen parameters.)

Structure description top

The melamine molecule and its organic and inorganic complexes or salts were widely researched by ancient Chemists (Martin et al. 1995; Perpétuo & Janczak, 2006). This study is a part of systematic investigation of dielectric ferroelectric materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Hang et al., 2009) and organic inorganic hybrid. Melaminium monoperchlorate monohydrate has no dielectric disuniform from 90 K to 430 K, (m.p. > 470 K).

The asymmetric unit of the title compound is composed of cationic (C3H7N6+), anionic (ClO4-) and one dissociative water molecular(Fig 1). The melaminium cation is protonated at only one melamine ring N atom. The six-membered aromatic ring of melaminium residues exhibit distortions from the regular hexagonal form. The internal C—N—C angle at the protonated N atom(119.41 (14) °) is greater than the other two C—N—C angles of the ring(115.45 (14) ° and 115.48 (14) °) and the internal N—C—N angles involving the nonprotonated ring N atoms (126.09 (15) °) are obviously greater than those containing protonated and non-protonated N atoms(121.65 (15) ° and 121.88 (15) °).

Fig. 2 shows a view down the c axis. The melaminium cations are interconnected by four N—H···N hydrogen bonds, forming ribbons parallel to (1 1 1). The ribbons are interconnected by other hydrogen bonds as well as by π-electron ring - π-electron ring interactions with the distance between the centroids of the neighbour melaminium rings (1-x,1-y,1-z) equal to 3.8097 Å. Melamine and its derivatives and organic and inorganic complexes or salts can develop well defined non-covalent supramolecular architectures via multiple hydrogen bonds. The hydrogen bonds are summarized in Tab. 1. The H atom of the protonated ring N atom (H4a) is donated to the water molecule, being involved in a strong N—H···O hydrogen bond. The other amine H atoms are involved in N—H···O, N—H···N and N—H···Cl hydrogen bonds. ClO4- anions take part in electrostatics equilibrium with the melaminium cations. They are also involved in N—H···O, O—H···O, and N—H···Cl hydrogen bonds.

For similar organic acid–base compounds, see: Martin & Pinkerton (1995); Perpétuo & Janczak (2006). For ferroelectric properties [of what? Are these references relevant to the title compound?], see: Hang et al. (2009), Li et al. (2008). For impedance studies, see; Uthrakumar et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the c axis. Dashed lines indicate hydrogen bonds.
2,4,6-triamino-1,3,5-triazin-1-ium perchlorate monohydrate top
Crystal data top
C3H7N6+·ClO4·H2OZ = 2
Mr = 244.61F(000) = 252
Triclinic, P1Dx = 1.781 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.654 (4) ÅCell parameters from 1388 reflections
b = 7.553 (7) Åθ = 3.0–27.6°
c = 11.893 (10) ŵ = 0.44 mm1
α = 102.72 (4)°T = 293 K
β = 94.58 (3)°Prism, colorless
γ = 110.78 (2)°0.20 × 0.20 × 0.20 mm
V = 456.1 (7) Å3
Data collection top
Rigaku SCXmini
diffractometer
2051 independent reflections
Radiation source: fine-focus sealed tube1719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.916, Tmax = 0.916l = 1514
4902 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.90 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.0106P]
where P = (Fo2 + 2Fc2)/3
2051 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.29 e Å3
10 restraintsΔρmin = 0.41 e Å3
Crystal data top
C3H7N6+·ClO4·H2Oγ = 110.78 (2)°
Mr = 244.61V = 456.1 (7) Å3
Triclinic, P1Z = 2
a = 5.654 (4) ÅMo Kα radiation
b = 7.553 (7) ŵ = 0.44 mm1
c = 11.893 (10) ÅT = 293 K
α = 102.72 (4)°0.20 × 0.20 × 0.20 mm
β = 94.58 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2051 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1719 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.916Rint = 0.030
4902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03110 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.29 e Å3
2051 reflectionsΔρmin = 0.41 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5601 (3)0.8552 (2)0.63004 (14)0.0133 (3)
C20.7940 (3)0.7067 (2)0.53001 (14)0.0129 (3)
C30.7094 (3)0.6425 (2)0.70349 (14)0.0130 (3)
O11.0855 (2)1.12497 (17)0.75979 (9)0.0166 (3)
O21.1733 (2)1.45744 (17)0.84904 (11)0.0201 (3)
O30.8606 (3)1.2106 (2)0.90661 (11)0.0274 (3)
O41.2993 (3)1.26696 (19)0.95543 (11)0.0244 (3)
O51.3200 (3)0.87257 (18)0.88354 (10)0.0196 (3)
H5B1.346 (4)0.9895 (10)0.9193 (14)0.023*
H5A1.259 (4)0.7975 (19)0.9260 (13)0.023*
Cl11.10439 (7)1.26476 (5)0.86874 (3)0.01324 (13)
N10.4347 (3)0.9749 (2)0.64603 (13)0.0172 (3)
H1B0.357 (3)0.990 (3)0.7040 (12)0.021*
H1A0.409 (4)1.034 (3)0.5952 (13)0.021*
N20.7213 (3)0.5547 (2)0.78757 (13)0.0169 (3)
H2B0.657 (4)0.576 (3)0.8500 (11)0.020*
H2A0.818 (3)0.489 (3)0.7840 (16)0.020*
N30.8987 (3)0.6748 (2)0.43553 (13)0.0162 (3)
H3B0.975 (3)0.594 (2)0.4283 (17)0.019*
H3A0.890 (4)0.741 (3)0.3865 (13)0.019*
N40.5745 (3)0.7610 (2)0.71408 (11)0.0131 (3)
H4A0.500 (3)0.784 (3)0.7707 (11)0.016*
N50.8221 (3)0.61161 (19)0.61130 (11)0.0131 (3)
N60.6663 (3)0.8296 (2)0.53570 (11)0.0129 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0126 (7)0.0127 (7)0.0130 (8)0.0043 (6)0.0003 (6)0.0015 (6)
C20.0130 (7)0.0121 (7)0.0118 (8)0.0041 (6)0.0006 (6)0.0012 (6)
C30.0115 (7)0.0123 (7)0.0136 (8)0.0036 (6)0.0014 (6)0.0024 (6)
O10.0217 (6)0.0173 (6)0.0111 (6)0.0095 (5)0.0030 (5)0.0008 (5)
O20.0241 (7)0.0143 (6)0.0249 (7)0.0091 (5)0.0061 (5)0.0073 (5)
O30.0210 (7)0.0342 (8)0.0240 (7)0.0048 (6)0.0153 (6)0.0072 (6)
O40.0325 (8)0.0254 (7)0.0162 (6)0.0170 (6)0.0064 (5)0.0012 (5)
O50.0282 (7)0.0153 (6)0.0185 (6)0.0093 (5)0.0111 (5)0.0067 (5)
Cl10.0151 (2)0.0145 (2)0.0113 (2)0.00664 (15)0.00399 (14)0.00364 (15)
N10.0233 (8)0.0230 (8)0.0138 (7)0.0167 (6)0.0076 (6)0.0069 (6)
N20.0202 (8)0.0240 (8)0.0151 (7)0.0145 (6)0.0089 (6)0.0099 (6)
N30.0240 (8)0.0194 (7)0.0136 (7)0.0151 (6)0.0082 (6)0.0077 (6)
N40.0151 (7)0.0163 (7)0.0102 (7)0.0079 (6)0.0060 (5)0.0039 (6)
N50.0154 (7)0.0146 (7)0.0119 (7)0.0079 (6)0.0040 (5)0.0044 (5)
N60.0159 (7)0.0145 (6)0.0103 (7)0.0084 (6)0.0028 (5)0.0029 (5)
Geometric parameters (Å, º) top
C1—N61.324 (2)O3—Cl11.4318 (16)
C1—N11.325 (2)O4—Cl11.4406 (16)
C1—N41.362 (2)O5—H5B0.845 (5)
C2—N31.327 (2)O5—H5A0.843 (5)
C2—N51.356 (2)N1—H1B0.855 (5)
C2—N61.357 (2)N1—H1A0.860 (5)
C3—N21.325 (2)N2—H2B0.861 (5)
C3—N51.329 (2)N2—H2A0.859 (5)
C3—N41.360 (2)N3—H3B0.854 (5)
O1—Cl11.4493 (16)N3—H3A0.855 (5)
O2—Cl11.4446 (18)N4—H4A0.840 (5)
N6—C1—N1120.73 (15)O2—Cl1—O1108.79 (9)
N6—C1—N4121.88 (15)C1—N1—H1B123.3 (14)
N1—C1—N4117.39 (15)C1—N1—H1A123.2 (14)
N3—C2—N5116.85 (15)H1B—N1—H1A113.2 (19)
N3—C2—N6117.06 (15)C3—N2—H2B122.9 (13)
N5—C2—N6126.09 (15)C3—N2—H2A117.4 (13)
N2—C3—N5120.63 (15)H2B—N2—H2A118.9 (18)
N2—C3—N4117.70 (15)C2—N3—H3B119.0 (13)
N5—C3—N4121.65 (15)C2—N3—H3A116.9 (13)
H5B—O5—H5A109.5 (11)H3B—N3—H3A124.0 (19)
O3—Cl1—O4110.66 (10)C3—N4—C1119.41 (14)
O3—Cl1—O2109.04 (8)C3—N4—H4A124.6 (13)
O4—Cl1—O2109.67 (9)C1—N4—H4A116.0 (13)
O3—Cl1—O1109.34 (9)C3—N5—C2115.48 (14)
O4—Cl1—O1109.31 (9)C1—N6—C2115.45 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O40.85 (1)2.16 (1)2.960 (3)158 (2)
O5—H5B···O5i0.85 (1)2.64 (2)3.081 (3)114 (2)
O5—H5A···O3ii0.84 (1)2.16 (1)2.883 (3)144 (2)
O5—H5A···O2iii0.84 (1)2.38 (2)2.867 (3)117 (1)
N1—H1B···O1iv0.86 (1)2.19 (1)2.890 (2)139 (2)
N1—H1B···O5iv0.86 (1)2.48 (2)3.146 (3)135 (2)
N1—H1A···N6v0.86 (1)2.14 (1)2.998 (3)178 (2)
N2—H2B···O4ii0.86 (1)2.31 (1)3.086 (3)151 (2)
N2—H2B···O2vi0.86 (1)2.56 (2)3.108 (3)123 (2)
N2—H2A···O2iii0.86 (1)2.20 (1)2.979 (3)150 (2)
N2—H2A···Cl1iii0.86 (1)2.99 (1)3.792 (3)157 (2)
N3—H3B···N5vii0.85 (1)2.23 (1)3.084 (3)173 (2)
N3—H3A···O1viii0.86 (1)2.19 (1)3.029 (3)168 (2)
N4—H4A···O5iv0.84 (1)1.90 (1)2.723 (2)168 (2)
Symmetry codes: (i) x+3, y+2, z+2; (ii) x+2, y+2, z+2; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x1, y1, z; (vii) x+2, y+1, z+1; (viii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC3H7N6+·ClO4·H2O
Mr244.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.654 (4), 7.553 (7), 11.893 (10)
α, β, γ (°)102.72 (4), 94.58 (3), 110.78 (2)
V3)456.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.916, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
4902, 2051, 1719
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.091, 0.90
No. of reflections2051
No. of parameters163
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O40.845 (5)2.160 (9)2.960 (3)157.9 (19)
O5—H5B···O5i0.845 (5)2.639 (19)3.081 (3)114.0 (15)
O5—H5A···O3ii0.843 (5)2.159 (11)2.883 (3)143.8 (15)
O5—H5A···O2iii0.843 (5)2.384 (15)2.867 (3)117.0 (13)
N1—H1B···O1iv0.855 (5)2.192 (14)2.890 (2)138.7 (17)
N1—H1B···O5iv0.855 (5)2.484 (15)3.146 (3)134.8 (17)
N1—H1A···N6v0.860 (5)2.138 (6)2.998 (3)177.5 (19)
N2—H2B···O4ii0.861 (5)2.306 (11)3.086 (3)150.7 (19)
N2—H2B···O2vi0.861 (5)2.555 (18)3.108 (3)122.9 (17)
N2—H2A···O2iii0.859 (5)2.203 (11)2.979 (3)150.2 (18)
N2—H2A···Cl1iii0.859 (5)2.989 (9)3.792 (3)156.6 (16)
N3—H3B···N5vii0.854 (5)2.234 (6)3.084 (3)173.3 (18)
N3—H3A···O1viii0.855 (5)2.189 (7)3.029 (3)167.5 (18)
N4—H4A···O5iv0.840 (5)1.895 (7)2.723 (2)168.3 (18)
Symmetry codes: (i) x+3, y+2, z+2; (ii) x+2, y+2, z+2; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y+2, z+1; (vi) x1, y1, z; (vii) x+2, y+1, z+1; (viii) x+2, y+2, z+1.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des. 5, 2026–2029.  Web of Science CSD CrossRef Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationMartin, A. & Pinkerton, A. A. (1995). Acta Cryst. C51, 2174–2177.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2006). Acta Cryst. C62, o372–o375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUthrakumar, R., Vesta, C., Raj, C. J., Dinakaran, S., Dhas, R. C. & Das, S. J. (2008). Cryst. Res. Technol. 43, 428–432.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds