supplementary materials


ng2778 scheme

Acta Cryst. (2010). E66, m701    [ doi:10.1107/S160053681001874X ]

Bis(acetato-[kappa]O)[1,2-bis(2-pyridylmethoxy)benzene-[kappa]4N,O,O',N']copper(II) monohydrate

S. Zhang, Y.-J. Wang, D.-S. Ma, Y. Liu and J.-S. Gao

Abstract top

In the title compound, [Cu(CH3COO)2(C18H16N2O2)]·H2O, the CuII ion is six-coordinated in a typically Jahn-Teller distorted octahedral environment defined by two O and two N atoms from the ligand and two O atoms from acetate anions. A linear chain structure propagating in [010] is built up by intermolecular O-H...O hydrogen bonds involving the uncoordinated water molecules.

Comment top

N-Heterocyclic ligands coordinated with transition metal ions can form a variety of topology structures, including macrocycles, polyhedra and linear and helical polymers. Our group has report three kinds of flexible pyridyl-based ligands in previous reports (Liu et al. 20010a; Liu et al. 20010 b). As a part of our continuing work for bipyridyl aromatic ligands, we report the crystal structure of the title compound here.

1,2-Bis(pyridin-2-ylmethoxy)benzene molecule act as a chelating ligand to coordinate with CuII ion forming a discrete strucutre. Two acetate counter ions also coordinate to the center CuII ion, resulting the CuII ion is six-coordinated in quadrangular bipyramid geometry (Figure 1, Table 1).

A one-dimensional chain structure is built up by intermolecular hydrogen bonds involving the uncoordinated water molecules (Figure 2, Table 2).

Related literature top

For the synthesis and for general backround to flexible pyridyl-based ligands, see: Liu et al. (2010a,b).

Experimental top

The 1,2-Bis(pyridin-2-ylmethoxy)benzene was synthesized by the reaction of ο-dihydroxybenzene and 2-chloromethylpyridine hydrochloride under nitrogen atmosphere and alkaline condition (Liu et al., 2010a). Title ligand (0.58 g, 2 mmol) and Cu(CH3COO)2.H2O (0.40 g, 2 mmol) were dissolved in 15 mL e thanol, and then the mixture keep stirring for 30 minute. The resulting solution was filtered, and the filtrate was allowed to stand in a desiccator at room temperature for several days. Bule needle crystals were obtained with yield 34 %.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methene C), C—H = 0.98 Å (methyl C), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing the one-dimensional hydrogen bonding structure. Dashed lines indicate the hydrogen bonds, no involving H atoms have been omitted.
Bis(acetato-κO)[1,2-bis(2-pyridylmethoxy)benzene- κ4N,O,O',N']copper(II) monohydrate top
Crystal data top
[Cu(C2H3O2)2(C18H16N2O2)]·H2OF(000) = 1020
Mr = 491.98Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15798 reflections
a = 11.661 (3) Åθ = 3.0–27.5°
b = 14.689 (6) ŵ = 1.03 mm1
c = 15.553 (4) ÅT = 291 K
β = 123.540 (11)°Block, blue
V = 2220.5 (12) Å30.20 × 0.19 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4960 independent reflections
Radiation source: fine-focus sealed tube3854 reflections with I > 2σ(I)
graphiteRint = 0.043
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.818, Tmax = 0.838k = 1919
21143 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2754P]
where P = (Fo2 + 2Fc2)/3
4960 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C2H3O2)2(C18H16N2O2)]·H2OV = 2220.5 (12) Å3
Mr = 491.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.661 (3) ŵ = 1.03 mm1
b = 14.689 (6) ÅT = 291 K
c = 15.553 (4) Å0.20 × 0.19 × 0.18 mm
β = 123.540 (11)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4960 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3854 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.838Rint = 0.043
21143 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.28 e Å3
S = 1.05Δρmin = 0.28 e Å3
4960 reflectionsAbsolute structure: ?
291 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19750 (2)0.638427 (17)0.351821 (17)0.02824 (9)
O10.43387 (14)0.58511 (11)0.40262 (11)0.0360 (3)
O20.23187 (14)0.59585 (11)0.21381 (11)0.0379 (4)
O30.26556 (16)0.75769 (10)0.34343 (12)0.0394 (4)
O40.13698 (19)0.81284 (13)0.39686 (14)0.0531 (5)
O50.15262 (15)0.51145 (10)0.35769 (11)0.0352 (3)
O60.00215 (19)0.56093 (13)0.39381 (14)0.0533 (5)
N10.33015 (19)0.64394 (11)0.50978 (13)0.0319 (4)
N20.01307 (18)0.65453 (12)0.20902 (13)0.0315 (4)
C10.2732 (3)0.66269 (16)0.56418 (17)0.0400 (5)
H10.17790.66510.52940.048*
C20.3524 (3)0.67823 (18)0.66939 (19)0.0513 (6)
H20.31150.69210.70490.062*
C30.4931 (3)0.6726 (2)0.72009 (18)0.0585 (7)
H30.54860.68360.79070.070*
C40.5530 (3)0.65064 (18)0.66613 (18)0.0503 (6)
H40.64790.64430.70030.060*
C50.4679 (2)0.63844 (15)0.56047 (16)0.0347 (5)
C60.5334 (2)0.62142 (17)0.50060 (17)0.0400 (5)
H6A0.56920.67800.49240.048*
H6B0.60930.57900.53810.048*
C70.4697 (2)0.58313 (15)0.33102 (16)0.0336 (5)
C80.6037 (2)0.57611 (17)0.35554 (19)0.0432 (6)
H80.67720.57430.42420.052*
C90.6276 (3)0.57171 (19)0.2769 (2)0.0532 (7)
H90.71700.56730.29290.064*
C100.5183 (3)0.57400 (19)0.1761 (2)0.0525 (7)
H100.53430.57040.12380.063*
C110.3831 (3)0.58167 (17)0.15022 (19)0.0440 (6)
H110.30980.58330.08140.053*
C120.3594 (2)0.58687 (14)0.22831 (16)0.0325 (5)
C130.1171 (2)0.61228 (17)0.11292 (16)0.0387 (5)
H13A0.09780.55880.07040.046*
H13B0.13640.66270.08250.046*
C140.0064 (2)0.63471 (15)0.11764 (16)0.0328 (4)
C150.1366 (2)0.63615 (18)0.02673 (17)0.0467 (6)
H150.14810.62220.03590.056*
C160.2490 (3)0.65856 (19)0.0306 (2)0.0526 (7)
H160.33700.65840.02930.063*
C170.2301 (2)0.68105 (18)0.12371 (19)0.0454 (6)
H170.30410.69750.12750.054*
C180.0983 (2)0.67845 (16)0.21095 (17)0.0369 (5)
H180.08490.69370.27390.044*
C190.2749 (4)0.91611 (19)0.3717 (2)0.0691 (9)
H19A0.36660.92230.43190.104*
H19B0.21680.96180.37280.104*
H19C0.27630.92350.31100.104*
C200.2198 (3)0.82288 (17)0.37095 (16)0.0406 (5)
C210.0351 (3)0.40102 (19)0.3948 (2)0.0531 (6)
H21A0.06090.38770.34770.080*
H21B0.06030.39190.46430.080*
H21C0.08870.36140.38110.080*
C220.0622 (2)0.49872 (16)0.38126 (16)0.0368 (5)
O70.1077 (2)0.40557 (15)0.17760 (17)0.0729 (6)
H710.03140.37720.15050.109*
H720.12230.43550.22950.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02986 (14)0.03193 (14)0.02291 (13)0.00047 (11)0.01457 (11)0.00016 (10)
O10.0302 (7)0.0476 (10)0.0287 (8)0.0046 (7)0.0153 (7)0.0046 (7)
O20.0285 (7)0.0602 (11)0.0254 (7)0.0034 (7)0.0152 (7)0.0004 (7)
O30.0487 (9)0.0370 (9)0.0358 (8)0.0042 (7)0.0254 (8)0.0001 (7)
O40.0606 (11)0.0524 (11)0.0561 (11)0.0162 (9)0.0384 (10)0.0136 (9)
O50.0353 (8)0.0358 (8)0.0345 (8)0.0041 (6)0.0193 (7)0.0006 (6)
O60.0604 (11)0.0581 (12)0.0542 (11)0.0101 (9)0.0397 (10)0.0089 (9)
N10.0400 (10)0.0301 (9)0.0247 (8)0.0018 (8)0.0173 (8)0.0000 (7)
N20.0314 (9)0.0360 (10)0.0272 (9)0.0014 (7)0.0163 (8)0.0017 (7)
C10.0528 (14)0.0394 (13)0.0335 (12)0.0003 (10)0.0274 (12)0.0016 (9)
C20.0784 (19)0.0500 (15)0.0348 (13)0.0035 (14)0.0372 (14)0.0017 (11)
C30.077 (2)0.0650 (18)0.0212 (11)0.0089 (15)0.0193 (13)0.0039 (11)
C40.0500 (15)0.0558 (17)0.0300 (12)0.0082 (12)0.0125 (12)0.0019 (11)
C50.0396 (12)0.0301 (11)0.0275 (10)0.0034 (9)0.0141 (10)0.0020 (9)
C60.0328 (11)0.0457 (14)0.0327 (11)0.0070 (10)0.0126 (10)0.0034 (10)
C70.0347 (11)0.0347 (12)0.0363 (12)0.0012 (9)0.0226 (10)0.0000 (9)
C80.0326 (12)0.0491 (15)0.0467 (14)0.0044 (10)0.0213 (12)0.0004 (11)
C90.0452 (14)0.0641 (18)0.0663 (18)0.0055 (12)0.0408 (15)0.0027 (14)
C100.0540 (15)0.0651 (18)0.0588 (17)0.0042 (13)0.0439 (15)0.0010 (13)
C110.0454 (13)0.0550 (16)0.0400 (13)0.0024 (11)0.0288 (12)0.0016 (11)
C120.0327 (11)0.0340 (12)0.0354 (11)0.0003 (9)0.0216 (10)0.0022 (9)
C130.0365 (12)0.0523 (14)0.0260 (11)0.0034 (10)0.0164 (10)0.0011 (9)
C140.0341 (11)0.0356 (12)0.0274 (10)0.0001 (9)0.0163 (10)0.0012 (9)
C150.0424 (13)0.0627 (17)0.0261 (11)0.0087 (12)0.0133 (11)0.0013 (11)
C160.0332 (12)0.074 (2)0.0350 (13)0.0103 (12)0.0089 (11)0.0045 (12)
C170.0366 (12)0.0519 (15)0.0456 (14)0.0120 (11)0.0215 (12)0.0096 (11)
C180.0376 (12)0.0398 (13)0.0344 (11)0.0070 (10)0.0206 (11)0.0040 (10)
C190.116 (3)0.0406 (16)0.0568 (17)0.0208 (16)0.0513 (19)0.0090 (13)
C200.0542 (15)0.0365 (13)0.0269 (11)0.0013 (11)0.0199 (11)0.0057 (9)
C210.0548 (15)0.0511 (16)0.0530 (16)0.0142 (13)0.0295 (14)0.0008 (12)
C220.0347 (11)0.0441 (13)0.0277 (11)0.0024 (10)0.0146 (10)0.0012 (9)
O70.0755 (14)0.0811 (16)0.0852 (15)0.0315 (12)0.0590 (14)0.0353 (12)
Geometric parameters (Å, °) top
Cu1—O51.9529 (16)C7—C81.393 (3)
Cu1—O31.9571 (16)C8—C91.398 (3)
Cu1—N12.0580 (18)C8—H80.9300
Cu1—N22.0823 (18)C9—C101.370 (4)
Cu1—O22.4719 (15)C9—H90.9300
Cu1—O12.5353 (16)C10—C111.401 (3)
O1—C71.389 (2)C10—H100.9300
O1—C61.414 (3)C11—C121.389 (3)
O2—C121.381 (2)C11—H110.9300
O2—C131.411 (3)C13—C141.519 (3)
O3—C201.280 (3)C13—H13A0.9700
O4—C201.244 (3)C13—H13B0.9700
O5—C221.307 (3)C14—C151.390 (3)
O6—C221.231 (3)C15—C161.385 (3)
N1—C51.345 (3)C15—H150.9300
N1—C11.362 (3)C16—C171.378 (3)
N2—C141.341 (3)C16—H160.9300
N2—C181.362 (3)C17—C181.378 (3)
C1—C21.383 (3)C17—H170.9300
C1—H10.9300C18—H180.9300
C2—C31.376 (4)C19—C201.510 (3)
C2—H20.9300C19—H19A0.9600
C3—C41.394 (4)C19—H19B0.9600
C3—H30.9300C19—H19C0.9600
C4—C51.384 (3)C21—C221.509 (3)
C4—H40.9300C21—H21A0.9600
C5—C61.516 (3)C21—H21B0.9600
C6—H6A0.9700C21—H21C0.9600
C6—H6B0.9700O7—H710.8527
C7—C121.392 (3)O7—H720.8496
O5—Cu1—O3170.76 (6)C7—C8—H8120.0
O5—Cu1—N191.48 (6)C9—C8—H8120.0
O3—Cu1—N188.82 (7)C10—C9—C8119.4 (2)
O5—Cu1—N290.74 (7)C10—C9—H9120.3
O3—Cu1—N292.58 (7)C8—C9—H9120.3
N1—Cu1—N2157.06 (7)C9—C10—C11121.2 (2)
O5—Cu1—O288.58 (6)C9—C10—H10119.4
O3—Cu1—O284.40 (6)C11—C10—H10119.4
N1—Cu1—O2132.15 (6)C12—C11—C10119.3 (2)
N2—Cu1—O270.73 (6)C12—C11—H11120.3
O5—Cu1—O187.92 (6)C10—C11—H11120.3
O3—Cu1—O183.47 (6)O2—C12—C11125.4 (2)
N1—Cu1—O170.70 (6)O2—C12—C7114.82 (17)
N2—Cu1—O1132.21 (6)C11—C12—C7119.81 (19)
O2—Cu1—O161.48 (5)O2—C13—C14109.00 (16)
C7—O1—C6116.14 (16)O2—C13—H13A109.9
C7—O1—Cu1120.87 (12)C14—C13—H13A109.9
C6—O1—Cu1108.85 (12)O2—C13—H13B109.9
C12—O2—C13118.16 (16)C14—C13—H13B109.9
C12—O2—Cu1123.96 (12)H13A—C13—H13B108.3
C13—O2—Cu1114.41 (12)N2—C14—C15121.7 (2)
C20—O3—Cu1112.84 (14)N2—C14—C13119.23 (18)
C22—O5—Cu1115.36 (14)C15—C14—C13119.09 (19)
C5—N1—C1118.86 (19)C16—C15—C14119.2 (2)
C5—N1—Cu1124.32 (14)C16—C15—H15120.4
C1—N1—Cu1116.53 (15)C14—C15—H15120.4
C14—N2—C18118.30 (18)C17—C16—C15119.8 (2)
C14—N2—Cu1125.17 (14)C17—C16—H16120.1
C18—N2—Cu1116.19 (14)C15—C16—H16120.1
N1—C1—C2122.2 (2)C18—C17—C16118.2 (2)
N1—C1—H1118.9C18—C17—H17120.9
C2—C1—H1118.9C16—C17—H17120.9
C3—C2—C1118.3 (2)N2—C18—C17122.9 (2)
C3—C2—H2120.9N2—C18—H18118.5
C1—C2—H2120.9C17—C18—H18118.5
C2—C3—C4120.3 (2)C20—C19—H19A109.5
C2—C3—H3119.9C20—C19—H19B109.5
C4—C3—H3119.9H19A—C19—H19B109.5
C5—C4—C3118.4 (2)C20—C19—H19C109.5
C5—C4—H4120.8H19A—C19—H19C109.5
C3—C4—H4120.8H19B—C19—H19C109.5
N1—C5—C4121.9 (2)O4—C20—O3124.2 (2)
N1—C5—C6119.58 (18)O4—C20—C19120.5 (2)
C4—C5—C6118.5 (2)O3—C20—C19115.3 (2)
O1—C6—C5109.39 (18)C22—C21—H21A109.5
O1—C6—H6A109.8C22—C21—H21B109.5
C5—C6—H6A109.8H21A—C21—H21B109.5
O1—C6—H6B109.8C22—C21—H21C109.5
C5—C6—H6B109.8H21A—C21—H21C109.5
H6A—C6—H6B108.2H21B—C21—H21C109.5
O1—C7—C12115.01 (17)O6—C22—O5123.8 (2)
O1—C7—C8124.8 (2)O6—C22—C21120.1 (2)
C12—C7—C8120.17 (19)O5—C22—C21116.0 (2)
C7—C8—C9120.0 (2)H71—O7—H72109.2
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O4i0.851.922.772 (3)174
O7—H72···O50.852.142.986 (2)178
Symmetry codes: (i) −x, y−1/2, −z+1/2.
Table 1
Selected geometric parameters (Å)
top
Cu1—O51.9529 (16)Cu1—N22.0823 (18)
Cu1—O31.9571 (16)Cu1—O22.4719 (15)
Cu1—N12.0580 (18)Cu1—O12.5353 (16)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O7—H71···O4i0.851.922.772 (3)174
O7—H72···O50.852.142.986 (2)178
Symmetry codes: (i) −x, y−1/2, −z+1/2.
Acknowledgements top

The authors thank the Special Funds for the Research of Scientific and Technological Innovative Talents of Harbin Municipal Science and Technology Bureau (2006RFQXG093) and Heilongjiang University for supporting this study.

references
References top

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010a). Cryst. Growth Des. 10, 1559–1568.

Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010b). Inorg. Chem. Commun. 13, 630–632.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.