supplementary materials


pk2243 scheme

Acta Cryst. (2010). E66, o1248    [ doi:10.1107/S1600536810015308 ]

3,5-Dibromo-2',3',4',5',6'-pentamethyl-1,1'-biphenyl

S. Rosca, M. Olaru, C. I. Rat and C. Silvestru

Abstract top

In the crystal structure of the title compound, C17H18Br2, the benzene rings are almost perpendicular [dihedral angle = 84.0 (3)°]. The crystal structure is consolidated by the presence of C-Br...[pi] interactions.

Comment top

Ligands containing m-terphenyl groups are known to stabilize many classes of compounds (Power, 2004).

The m-terphenyl organic precursors are prepared by coupling, via a two aryne sequence, between aromatic halides and two equivalents of Grignard reagent (Du et al., 1986) or by palladium catalyzed cross-coupling reactions (Collins et al., 2002; Matsumoto et al., 2004; Berthiol et al., 2004; Kim et al., 2005; Konishi et al., 2006; Cocchi et al., 2007).

The title compound was obtained as a side-product in the preparation of 3,5-(2,3,4,5,6-Me5C6)2C6H3Br by the Suzuki cross-coupling between 2,3,4,5,6-Me5C6B(OH)2 and 1,3,5-Br3C6H3.

The dihedral angle between the planes containing the two benzene rings is 84.0 (3)° (Fig. 1), similar to those observed for the closest related compounds 2,3,4,5,6,4'-hexamethylbiphenyl tetrachloro-p-benzoquinone adduct (Rathore et al., 1997) or 2-iodo-2',3',4',5',6'-pentamethylbiphenyl (Hartmann & Niemeyer, 2001). The bond lengths and bonding angles are normal.

In the crystal structure there are intermolecular interactions between the bromine atoms and the π electrons the methyl substituted benzene rings (Fig. 2 and Table 1).

Related literature top

For structures of related methyl substituted biphenyls, see: Fröhlich & Musso (1985); Hafelinger & Strähle (1976); Hartmann & Niemeyer (2001); Niemeyer (2006); Pickett (1936); Rathore et al. (1997). For background to ligands containing m-terphenyl groups, see: Berthiol et al. (2004); Cocchi et al. (2007); Collins et al. (2002); Du et al. (1986); Kim et al. (2005); Konishi et al. (2006); Matsumoto et al. (2004); Power (2004).

Experimental top

Colourless crystals were obtained by slow evaporation of the solvents from solutions of the title compound in a mixture of dichloromethane and hexane. mp = 177–178 °C. 1H NMR (300 MHz, CDCl3): δ 1.95 (s, 6H), 2.25 (s, 6H), 2.30 (s, 3H), 7.24 (d, J = 1.8 Hz, 2H), 7.66 (t, J = 1.8 Hz, 1H). 13C NMR (75 MHz, CDCl3): δ 16.71, 16.98, 18.56, 123.00, 131.32, 131.58, 132.15, 132.76, 135.02, 137.14, 146.98.

Refinement top

Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic hydrogen atoms and 1.5 for hydrogen atoms of the methyl groups. Methyl hydrogen atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids of Br and C atoms drawn at 25 % probability level.
[Figure 2] Fig. 2. Intermolecular Br···π interactions (shown as dashed lines) in the structure of the title compound. Cg2 is the centroid of the benzene ring C7–C12. Symmetry codes: (i) 1+x, y, z; (ii) -1+x, y, z.
3,5-Dibromo-2',3',4',5',6'-pentamethyl-1,1'-biphenyl top
Crystal data top
C17H18Br2F(000) = 760
Mr = 382.13Dx = 1.622 Mg m3
Monoclinic, P21/nMelting point = 451–450 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.011 (5) ÅCell parameters from 2189 reflections
b = 14.065 (8) Åθ = 2.7–22.4°
c = 12.387 (7) ŵ = 5.17 mm1
β = 94.613 (9)°T = 297 K
V = 1564.8 (15) Å3Blocks, colourless
Z = 40.35 × 0.32 × 0.29 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2760 independent reflections
Radiation source: fine-focus sealed tube1588 reflections with I > 2σ(I)
graphiteRint = 0.127
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.265, Tmax = 0.316k = 1616
10702 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0001P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
2760 reflectionsΔρmax = 0.67 e Å3
178 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: (SHELXL97; Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0150 (15)
Crystal data top
C17H18Br2V = 1564.8 (15) Å3
Mr = 382.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.011 (5) ŵ = 5.17 mm1
b = 14.065 (8) ÅT = 297 K
c = 12.387 (7) Å0.35 × 0.32 × 0.29 mm
β = 94.613 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2760 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1588 reflections with I > 2σ(I)
Tmin = 0.265, Tmax = 0.316Rint = 0.127
10702 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.150Δρmax = 0.67 e Å3
S = 0.94Δρmin = 0.53 e Å3
2760 reflectionsAbsolute structure: ?
178 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.08347 (7)0.76924 (6)0.65316 (7)0.0714 (4)
Br20.65525 (8)1.06226 (5)0.62304 (8)0.0736 (4)
C10.8834 (7)0.8091 (5)0.6463 (5)0.0440 (16)
C20.8516 (6)0.9036 (5)0.6407 (5)0.0498 (17)
H20.92750.94850.64150.06*
C30.7030 (7)0.9318 (4)0.6337 (5)0.0473 (16)
C40.5917 (6)0.8654 (4)0.6332 (4)0.0376 (15)
H40.49280.8850.62790.045*
C50.6246 (6)0.7700 (4)0.6404 (5)0.0392 (15)
C60.7720 (6)0.7427 (4)0.6455 (5)0.0428 (15)
H60.79620.67840.64830.051*
C70.5039 (6)0.6982 (4)0.6411 (5)0.0394 (15)
C80.4465 (6)0.6539 (4)0.5448 (5)0.0445 (16)
C90.3389 (6)0.5839 (4)0.5454 (6)0.0468 (17)
C100.2872 (7)0.5553 (5)0.6454 (7)0.0544 (18)
C110.3451 (7)0.5992 (5)0.7412 (6)0.0484 (17)
C120.4511 (6)0.6700 (4)0.7391 (5)0.0444 (16)
C130.5038 (7)0.6859 (5)0.4388 (5)0.0609 (19)
H13A0.53040.63120.39810.091*
H13B0.58980.72550.45350.091*
H13C0.42760.72110.39760.091*
C140.2779 (8)0.5413 (5)0.4401 (6)0.067 (2)
H14A0.24680.59120.39040.101*
H14B0.19420.50160.45220.101*
H14C0.35360.50390.41010.101*
C150.1694 (8)0.4811 (6)0.6491 (8)0.086 (3)
H15A0.19190.44060.71060.129*
H15B0.16590.44370.5840.129*
H15C0.07470.51110.65490.129*
C160.2841 (9)0.5705 (6)0.8452 (7)0.084 (3)
H16A0.32780.60920.90310.126*
H16B0.30730.50490.85990.126*
H16C0.1780.57890.83920.126*
C170.5056 (8)0.7204 (5)0.8418 (6)0.065 (2)
H17A0.42640.75810.86680.097*
H17B0.58770.76090.82790.097*
H17C0.53740.67440.8960.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0413 (5)0.1017 (7)0.0722 (6)0.0182 (4)0.0113 (4)0.0009 (5)
Br20.0704 (6)0.0468 (5)0.1041 (8)0.0015 (4)0.0105 (5)0.0050 (4)
C10.041 (3)0.054 (4)0.038 (4)0.012 (3)0.011 (3)0.001 (3)
C20.037 (4)0.073 (5)0.042 (4)0.011 (3)0.016 (3)0.005 (4)
C30.042 (4)0.053 (4)0.048 (4)0.001 (3)0.009 (3)0.005 (3)
C40.035 (3)0.046 (4)0.032 (4)0.007 (3)0.008 (3)0.000 (3)
C50.040 (3)0.049 (4)0.030 (3)0.001 (3)0.011 (3)0.000 (3)
C60.044 (4)0.045 (4)0.040 (4)0.011 (3)0.006 (3)0.002 (3)
C70.040 (3)0.040 (3)0.039 (4)0.003 (3)0.009 (3)0.002 (3)
C80.044 (4)0.048 (4)0.041 (4)0.009 (3)0.006 (3)0.002 (3)
C90.030 (3)0.051 (4)0.059 (5)0.006 (3)0.002 (3)0.006 (3)
C100.043 (4)0.050 (4)0.072 (6)0.007 (3)0.013 (4)0.012 (4)
C110.042 (4)0.056 (4)0.050 (5)0.015 (3)0.022 (3)0.008 (4)
C120.038 (3)0.054 (4)0.043 (4)0.006 (3)0.011 (3)0.004 (3)
C130.070 (5)0.068 (5)0.046 (5)0.005 (4)0.016 (4)0.002 (4)
C140.061 (4)0.071 (5)0.068 (6)0.006 (4)0.001 (4)0.020 (4)
C150.060 (5)0.088 (6)0.113 (8)0.023 (4)0.024 (5)0.012 (5)
C160.067 (5)0.110 (7)0.080 (6)0.005 (5)0.036 (5)0.016 (5)
C170.077 (5)0.071 (5)0.048 (5)0.006 (4)0.019 (4)0.006 (4)
Geometric parameters (Å, °) top
Br1—C11.883 (6)C10—C151.491 (9)
Br2—C31.887 (6)C11—C121.381 (8)
C1—C21.361 (8)C11—C161.496 (10)
C1—C61.370 (8)C12—C171.504 (9)
C2—C31.392 (8)C13—H13A0.96
C2—H20.93C13—H13B0.96
C3—C41.370 (8)C13—H13C0.96
C4—C51.376 (8)C14—H14A0.96
C4—H40.93C14—H14B0.96
C5—C61.379 (7)C14—H14C0.96
C5—C71.484 (8)C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—C121.397 (8)C15—H15C0.96
C7—C81.408 (8)C16—H16A0.96
C8—C91.382 (8)C16—H16B0.96
C8—C131.517 (9)C16—H16C0.96
C9—C101.417 (10)C17—H17A0.96
C9—C141.499 (9)C17—H17B0.96
C10—C111.401 (10)C17—H17C0.96
C2—C1—C6121.0 (6)C11—C12—C7120.4 (6)
C2—C1—Br1119.3 (5)C11—C12—C17120.2 (6)
C6—C1—Br1119.7 (5)C7—C12—C17119.3 (6)
C1—C2—C3118.6 (6)C8—C13—H13A109.5
C1—C2—H2120.7C8—C13—H13B109.5
C3—C2—H2120.7H13A—C13—H13B109.5
C4—C3—C2120.4 (6)C8—C13—H13C109.5
C4—C3—Br2120.0 (5)H13A—C13—H13C109.5
C2—C3—Br2119.6 (5)H13B—C13—H13C109.5
C3—C4—C5120.7 (6)C9—C14—H14A109.5
C3—C4—H4119.6C9—C14—H14B109.5
C5—C4—H4119.6H14A—C14—H14B109.5
C4—C5—C6118.4 (6)C9—C14—H14C109.5
C4—C5—C7120.6 (5)H14A—C14—H14C109.5
C6—C5—C7121.0 (5)H14B—C14—H14C109.5
C1—C6—C5120.9 (6)C10—C15—H15A109.5
C1—C6—H6119.6C10—C15—H15B109.5
C5—C6—H6119.6H15A—C15—H15B109.5
C12—C7—C8118.9 (6)C10—C15—H15C109.5
C12—C7—C5120.0 (6)H15A—C15—H15C109.5
C8—C7—C5121.0 (6)H15B—C15—H15C109.5
C9—C8—C7121.4 (6)C11—C16—H16A109.5
C9—C8—C13120.2 (6)C11—C16—H16B109.5
C7—C8—C13118.4 (6)H16A—C16—H16B109.5
C8—C9—C10119.2 (6)C11—C16—H16C109.5
C8—C9—C14119.2 (7)H16A—C16—H16C109.5
C10—C9—C14121.6 (6)H16B—C16—H16C109.5
C11—C10—C9119.3 (6)C12—C17—H17A109.5
C11—C10—C15120.1 (7)C12—C17—H17B109.5
C9—C10—C15120.7 (7)H17A—C17—H17B109.5
C12—C11—C10120.9 (6)C12—C17—H17C109.5
C12—C11—C16120.9 (7)H17A—C17—H17C109.5
C10—C11—C16118.2 (7)H17B—C17—H17C109.5
C6—C1—C2—C30.2 (9)C7—C8—C9—C101.0 (9)
Br1—C1—C2—C3178.9 (5)C13—C8—C9—C10180.0 (6)
C1—C2—C3—C40.4 (9)C7—C8—C9—C14177.9 (5)
C1—C2—C3—Br2178.8 (5)C13—C8—C9—C141.0 (9)
C2—C3—C4—C50.5 (9)C8—C9—C10—C110.6 (9)
Br2—C3—C4—C5179.7 (4)C14—C9—C10—C11178.3 (6)
C3—C4—C5—C61.6 (8)C8—C9—C10—C15179.0 (6)
C3—C4—C5—C7179.3 (6)C14—C9—C10—C150.1 (9)
C2—C1—C6—C50.9 (9)C9—C10—C11—C120.2 (9)
Br1—C1—C6—C5180.0 (4)C15—C10—C11—C12178.2 (6)
C4—C5—C6—C11.8 (9)C9—C10—C11—C16177.5 (6)
C7—C5—C6—C1179.1 (6)C15—C10—C11—C160.9 (9)
C4—C5—C7—C1289.5 (7)C10—C11—C12—C70.8 (9)
C6—C5—C7—C1291.4 (7)C16—C11—C12—C7178.0 (6)
C4—C5—C7—C894.0 (7)C10—C11—C12—C17176.4 (6)
C6—C5—C7—C885.0 (7)C16—C11—C12—C170.8 (9)
C12—C7—C8—C90.5 (9)C8—C7—C12—C110.4 (9)
C5—C7—C8—C9177.0 (5)C5—C7—C12—C11176.1 (5)
C12—C7—C8—C13179.5 (5)C8—C7—C12—C17176.8 (5)
C5—C7—C8—C134.0 (8)C5—C7—C12—C176.7 (8)
Table 1
C–Br···π interactions (Å, °)
top
Cg2 is the centroid of the C7–C12 benzene ring.
YX···CgYXX···CgY···CgYX···Cg
C1—Br1···Cg2i1.883 (6)3.464 (3)5.283 (8)161.4 (2)
Symmetry code: (i) 1+x, y, z.
Acknowledgements top

This work was supported by the National University Research Council (CNCSIS) of Romania (project RP 2 / January 2008). SR thanks Babeş-Bolyai University for a research fellowship (21/2009). We thank Dr Richard A. Varga for the crystallographic measurements and data refinement.

references
References top

Berthiol, F., Kondolff, I., Doucet, H. & Santelli, M. (2004). J. Organomet. Chem. 689, 2786–2798.

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Cocchi, M., Virgili, D., Fattori, V., Rochester, D. L. & Williams, J. A. G. (2007). Adv. Funct. Mater. 17, 285–289.

Collins, S. K., Yap, G. P. A. & Fallis, A. G. (2002). Org. Lett. 4, 11–14.

Du, C.-J. F., Hart, H. & Ng, K.-K. D. (1986). J. Org. Chem. 51, 3162–3165.

Fröhlich, R. & Musso, H. (1985). Chem. Ber. 118, 4649–4651.

Hafelinger, G. & Strähle, J. (1976). Z. Naturforsch. Teil B, 31, 1155–1156.

Hartmann, N. & Niemeyer, M. (2001). Synth. Commun. 31, 3839–3845.

Kim, J.-K., Hong, M.-K., Ahn, J.-H. & Lee, M. (2005). Angew. Chem. Int. Ed. 44, 328–332.

Konishi, K., Yamaguchi, H. & Harada, A. (2006). Chem. Lett. 35, 720–721.

Matsumoto, K., Hatano, K., Umezawa, N. & Higuchi, T. (2004). Synthesis, pp. 2181–2185.

Niemeyer, M. (2006). Private communication (refcode: LESYOY). CCDC, Cambridge, England.

Pickett, L. W. (1936). J. Am. Chem. Soc. 58, 2299–2303.

Power, P. P. (2004). J. Organomet. Chem. 689, 3904–3919.

Rathore, R., Lindeman, S. V. & Kochi, J. K. (1997). J. Am. Chem. Soc. 119, 9393–9404.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.