organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(1,1,1,3,3,3-Hexa­fluoro­propane-2,2-diyl)di­benzoic acid

aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: yadxgncl@126.com

(Received 19 March 2010; accepted 14 May 2010; online 19 May 2010)

In the title compound, C17H10F6O4, the two benzene rings are twisted with respect to each other, making a dihedral angle of 67.43 (12)°. In the crystal, adjacent mol­ecules are linked by O—H⋯O and C—H⋯F hydrogen bonding, forming a wave-like layered supra­molecular structure.

Related literature

For the use of bibenzoic acids as bridging ligands for the synthesis of novel solid-state architectures, see: Zou et al. (2007[Zou, R.-Q., Zhong, R.-Q., Du, M., Kiyobayashi, T. & Xu, Q. (2007). Chem. Commun. pp. 2467-2469.]). For the structures of related dibenzoic acid compounds, see: Potts et al. (2007[Potts, S., Bredenkamp, M. W. & Gertenbach, J.-A. (2007). Acta Cryst. E63, o2887.]); Lian et al. (2007[Lian, F.-Y., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2007). Acta Cryst. E63, o2870.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10F6O4

  • Mr = 392.25

  • Monoclinic, P 21 /c

  • a = 7.7523 (16) Å

  • b = 13.381 (3) Å

  • c = 16.134 (3) Å

  • β = 102.294 (4)°

  • V = 1635.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.972

  • 8113 measured reflections

  • 2904 independent reflections

  • 1339 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.071

  • S = 1.00

  • 2904 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O4i 0.82 1.85 2.661 (2) 169
O3—H3A⋯O1ii 0.82 1.80 2.603 (2) 165
C15—H15⋯F1iii 0.93 2.48 3.382 (3) 163
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The rational design and synthesis of novel solid-state architectures are of current interest in the field of supramolecular chemistry and crystal engineering, due to intriguing structural motifs that can be created by various intermolecular interactions. Supramolecular chemistry uses molecular recognition processes that rely heavily on the understanding of the recognition properties of the functional groups involved in these interactions (Zou et al., 2007). Herein, we reported the organic crystal structure of C17H10F6O4, which is similar to that of the reported compounds (Potts et al. 2007; Lian et al.., 2007).

The molecular structure is shown in Fig. 1. The dihedral angle between the two benzene rings of the flexible H2hfipbb molecule is 67.43 (12)°. Strong intermolecular O—H···O and C—H···F hydrogen bonds (Table 1) link the molecules into the 2D wave-like layer structure (Fig. 2).

Related literature top

For the use of bibenzoic acids as bridging ligands for the synthesis of novel solid-state architectures, see: Zou et al. (2007). For related dibenzoic acid compounds, see: Potts et al. (2007); Lian et al. (2007).

Experimental top

The title compound was prepared by hydrothermal method. A mixture of Zn(Ac)2.4H2O (0.20 mmol), 2,2'-bipyridine (bipy 0.20 mmol), 4,4'-(hexafluoroisopropylidene)bis(benzoic acid) (H2hfipbb 0.20 mmol) and water (10 ml) was stirred for 20 min. The mixture was then transferred to a 23 ml Teflon-lined autoclave and kept at 433 K for 72 h under autogenous pressure. Then the mixture was cooled to room temperature slowly, the targeted Zn complex was not obtained. Colorless single crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture.

Refinement top

H atoms were included in the riding approximation with C—H = 0.93 and O—H = 0.82 Å, Uiso(H) = 1.2Ueq(C,O).

Structure description top

The rational design and synthesis of novel solid-state architectures are of current interest in the field of supramolecular chemistry and crystal engineering, due to intriguing structural motifs that can be created by various intermolecular interactions. Supramolecular chemistry uses molecular recognition processes that rely heavily on the understanding of the recognition properties of the functional groups involved in these interactions (Zou et al., 2007). Herein, we reported the organic crystal structure of C17H10F6O4, which is similar to that of the reported compounds (Potts et al. 2007; Lian et al.., 2007).

The molecular structure is shown in Fig. 1. The dihedral angle between the two benzene rings of the flexible H2hfipbb molecule is 67.43 (12)°. Strong intermolecular O—H···O and C—H···F hydrogen bonds (Table 1) link the molecules into the 2D wave-like layer structure (Fig. 2).

For the use of bibenzoic acids as bridging ligands for the synthesis of novel solid-state architectures, see: Zou et al. (2007). For related dibenzoic acid compounds, see: Potts et al. (2007); Lian et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and labeling of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. 2D wave-like layer of (I). Dashed lines denote hydrogen bonds.
4,4'-(1,1,1,3,3,3-Hexafluoropropane-2,2-diyl)dibenzoic acid top
Crystal data top
C17H10F6O4F(000) = 792
Mr = 392.25Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 775 reflections
a = 7.7523 (16) Åθ = 2.7–18.7°
b = 13.381 (3) ŵ = 0.16 mm1
c = 16.134 (3) ÅT = 293 K
β = 102.294 (4)°Prism, colorless
V = 1635.2 (6) Å30.35 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube1339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.963, Tmax = 0.972k = 1515
8113 measured reflectionsl = 1319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0135P)2 + 0.190P]
where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H10F6O4V = 1635.2 (6) Å3
Mr = 392.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7523 (16) ŵ = 0.16 mm1
b = 13.381 (3) ÅT = 293 K
c = 16.134 (3) Å0.35 × 0.20 × 0.18 mm
β = 102.294 (4)°
Data collection top
Bruker SMART CCD
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1339 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.972Rint = 0.053
8113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
2904 reflectionsΔρmin = 0.19 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2346 (4)0.0955 (2)0.4514 (2)0.0540 (8)
C20.1474 (3)0.04538 (17)0.38975 (18)0.0467 (7)
C30.0256 (3)0.06770 (16)0.38831 (17)0.0482 (7)
H30.09080.10940.42950.058*
C40.1019 (3)0.02807 (17)0.32574 (17)0.0491 (7)
H40.21880.04350.32540.059*
C50.0090 (3)0.03396 (17)0.26363 (17)0.0438 (7)
C60.1618 (3)0.05959 (18)0.26780 (19)0.0599 (8)
H60.22510.10420.22860.072*
C70.2381 (3)0.01936 (19)0.32963 (19)0.0612 (8)
H70.35390.03630.33090.073*
C80.1010 (3)0.07485 (17)0.19469 (18)0.0430 (7)
C90.2103 (4)0.1652 (2)0.2347 (2)0.0584 (8)
C100.0290 (4)0.1105 (2)0.1152 (2)0.0586 (8)
C110.2132 (3)0.00552 (17)0.16376 (15)0.0412 (7)
C120.1452 (3)0.10175 (17)0.14883 (16)0.0489 (7)
H120.03720.11710.16210.059*
C130.2346 (3)0.17475 (18)0.11477 (16)0.0500 (7)
H130.18560.23820.10450.060*
C140.3958 (3)0.15424 (18)0.09593 (16)0.0460 (7)
C150.4658 (3)0.05969 (19)0.11157 (18)0.0609 (8)
H150.57580.04540.10020.073*
C160.3744 (3)0.01372 (19)0.14386 (17)0.0575 (8)
H160.42230.07760.15240.069*
C170.4938 (4)0.2307 (2)0.05836 (17)0.0513 (8)
O10.1535 (2)0.15916 (13)0.50126 (12)0.0654 (6)
O20.3969 (3)0.07246 (13)0.44691 (15)0.0814 (7)
H2A0.44150.11270.47450.098*
O30.6508 (3)0.20695 (12)0.05373 (14)0.0748 (6)
H3A0.70200.25630.04080.090*
O40.4229 (2)0.31255 (13)0.03316 (12)0.0628 (6)
F10.14945 (18)0.04108 (11)0.08519 (10)0.0701 (5)
F20.11835 (19)0.19326 (11)0.12709 (10)0.0760 (5)
F30.05259 (19)0.13151 (11)0.05246 (11)0.0747 (5)
F40.1158 (2)0.22673 (10)0.27230 (11)0.0775 (5)
F50.2745 (2)0.22093 (10)0.17918 (11)0.0736 (5)
F60.3482 (2)0.13628 (10)0.29418 (11)0.0664 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (2)0.0537 (18)0.062 (3)0.0027 (15)0.0283 (19)0.0126 (16)
C20.0535 (19)0.0446 (15)0.046 (2)0.0039 (14)0.0196 (17)0.0041 (14)
C30.0538 (18)0.0478 (15)0.044 (2)0.0051 (13)0.0139 (17)0.0007 (14)
C40.0454 (17)0.0559 (16)0.049 (2)0.0061 (14)0.0176 (17)0.0013 (15)
C50.0483 (18)0.0442 (15)0.041 (2)0.0032 (13)0.0150 (16)0.0021 (14)
C60.0547 (19)0.0644 (17)0.064 (3)0.0151 (14)0.0211 (18)0.0206 (16)
C70.0477 (19)0.0698 (19)0.073 (3)0.0114 (15)0.0275 (19)0.0068 (18)
C80.0423 (15)0.0464 (15)0.039 (2)0.0000 (12)0.0060 (15)0.0044 (14)
C90.055 (2)0.0553 (19)0.065 (3)0.0058 (16)0.014 (2)0.0039 (18)
C100.057 (2)0.0604 (19)0.059 (3)0.0039 (16)0.014 (2)0.0142 (18)
C110.0412 (16)0.0499 (16)0.0327 (19)0.0042 (13)0.0078 (14)0.0010 (13)
C120.0463 (17)0.0543 (16)0.051 (2)0.0059 (13)0.0216 (16)0.0019 (15)
C130.0556 (18)0.0479 (15)0.049 (2)0.0062 (14)0.0162 (16)0.0005 (14)
C140.0464 (17)0.0536 (17)0.039 (2)0.0017 (14)0.0107 (15)0.0016 (14)
C150.0453 (17)0.0694 (19)0.076 (3)0.0081 (15)0.0307 (17)0.0128 (17)
C160.0542 (19)0.0532 (17)0.070 (2)0.0142 (14)0.0240 (18)0.0094 (16)
C170.0479 (19)0.0664 (19)0.044 (2)0.0031 (16)0.0188 (17)0.0045 (16)
O10.0729 (14)0.0669 (13)0.0592 (16)0.0006 (10)0.0205 (12)0.0136 (11)
O20.0789 (15)0.0848 (15)0.096 (2)0.0088 (12)0.0523 (14)0.0270 (13)
O30.0644 (14)0.0759 (14)0.0945 (18)0.0037 (11)0.0400 (13)0.0129 (13)
O40.0660 (13)0.0586 (11)0.0685 (15)0.0055 (10)0.0252 (11)0.0127 (11)
F10.0562 (10)0.0868 (11)0.0613 (13)0.0170 (8)0.0013 (9)0.0071 (9)
F20.0732 (11)0.0693 (10)0.0835 (14)0.0196 (8)0.0125 (10)0.0244 (10)
F30.0710 (11)0.0992 (12)0.0547 (12)0.0075 (9)0.0151 (10)0.0247 (9)
F40.0733 (11)0.0613 (10)0.1000 (16)0.0059 (8)0.0231 (11)0.0212 (9)
F50.0774 (12)0.0578 (9)0.0885 (15)0.0155 (8)0.0242 (11)0.0058 (9)
F60.0562 (10)0.0689 (10)0.0677 (13)0.0017 (8)0.0013 (9)0.0144 (9)
Geometric parameters (Å, º) top
C1—O11.246 (3)C9—F51.340 (3)
C1—O21.283 (3)C10—F11.333 (3)
C1—C21.477 (3)C10—F31.332 (3)
C2—C71.377 (3)C10—F21.341 (3)
C2—C31.379 (3)C11—C161.379 (3)
C3—C41.380 (3)C11—C121.393 (3)
C3—H30.9300C12—C131.378 (3)
C4—C51.380 (3)C12—H120.9300
C4—H40.9300C13—C141.375 (3)
C5—C61.383 (3)C13—H130.9300
C5—C81.544 (3)C14—C151.379 (3)
C6—C71.374 (3)C14—C171.479 (3)
C6—H60.9300C15—C161.377 (3)
C7—H70.9300C15—H150.9300
C8—C101.530 (3)C16—H160.9300
C8—C111.532 (3)C17—O41.254 (3)
C8—C91.538 (3)C17—O31.276 (3)
C9—F41.331 (3)O2—H2A0.8200
C9—F61.333 (3)O3—H3A0.8200
O1—C1—O2123.7 (3)F6—C9—C8111.0 (2)
O1—C1—C2120.3 (3)F5—C9—C8114.0 (3)
O2—C1—C2115.9 (3)F1—C10—F3106.3 (3)
C7—C2—C3118.5 (3)F1—C10—F2106.5 (2)
C7—C2—C1121.4 (3)F3—C10—F2106.1 (2)
C3—C2—C1119.9 (3)F1—C10—C8111.9 (2)
C2—C3—C4119.9 (2)F3—C10—C8111.6 (2)
C2—C3—H3120.0F2—C10—C8113.9 (2)
C4—C3—H3120.0C16—C11—C12117.4 (2)
C5—C4—C3121.5 (2)C16—C11—C8123.4 (2)
C5—C4—H4119.2C12—C11—C8119.0 (2)
C3—C4—H4119.2C13—C12—C11121.4 (2)
C4—C5—C6118.1 (2)C13—C12—H12119.3
C4—C5—C8119.1 (2)C11—C12—H12119.3
C6—C5—C8122.8 (2)C14—C13—C12120.3 (2)
C7—C6—C5120.2 (3)C14—C13—H13119.9
C7—C6—H6119.9C12—C13—H13119.9
C5—C6—H6119.9C13—C14—C15118.9 (2)
C6—C7—C2121.6 (2)C13—C14—C17121.5 (2)
C6—C7—H7119.2C15—C14—C17119.5 (2)
C2—C7—H7119.2C14—C15—C16120.6 (2)
C10—C8—C11105.3 (2)C14—C15—H15119.7
C10—C8—C9108.2 (2)C16—C15—H15119.7
C11—C8—C9112.9 (2)C11—C16—C15121.3 (2)
C10—C8—C5113.1 (2)C11—C16—H16119.3
C11—C8—C5111.55 (19)C15—C16—H16119.3
C9—C8—C5105.9 (2)O4—C17—O3123.8 (3)
F4—C9—F6106.7 (3)O4—C17—C14120.6 (3)
F4—C9—F5106.3 (2)O3—C17—C14115.6 (3)
F6—C9—F5106.7 (2)C1—O2—H2A109.5
F4—C9—C8111.7 (2)C17—O3—H3A109.5
O1—C1—C2—C7174.9 (2)C11—C8—C10—F170.1 (3)
O2—C1—C2—C72.1 (4)C9—C8—C10—F1168.9 (2)
O1—C1—C2—C31.2 (4)C5—C8—C10—F151.9 (3)
O2—C1—C2—C3178.2 (2)C11—C8—C10—F348.8 (3)
C7—C2—C3—C42.2 (4)C9—C8—C10—F372.2 (3)
C1—C2—C3—C4173.9 (2)C5—C8—C10—F3170.8 (2)
C2—C3—C4—C50.1 (4)C11—C8—C10—F2169.0 (2)
C3—C4—C5—C63.0 (4)C9—C8—C10—F248.0 (3)
C3—C4—C5—C8179.2 (2)C5—C8—C10—F269.0 (3)
C4—C5—C6—C73.6 (4)C10—C8—C11—C1694.9 (3)
C8—C5—C6—C7178.7 (2)C9—C8—C11—C1622.9 (4)
C5—C6—C7—C21.3 (4)C5—C8—C11—C16142.0 (2)
C3—C2—C7—C61.6 (4)C10—C8—C11—C1280.3 (3)
C1—C2—C7—C6174.5 (3)C9—C8—C11—C12161.9 (2)
C4—C5—C8—C10159.9 (2)C5—C8—C11—C1242.7 (3)
C6—C5—C8—C1022.4 (3)C16—C11—C12—C130.6 (4)
C4—C5—C8—C1141.5 (3)C8—C11—C12—C13174.9 (2)
C6—C5—C8—C11140.9 (2)C11—C12—C13—C141.1 (4)
C4—C5—C8—C981.7 (3)C12—C13—C14—C150.1 (4)
C6—C5—C8—C995.9 (3)C12—C13—C14—C17179.3 (2)
C10—C8—C9—F473.2 (3)C13—C14—C15—C161.3 (4)
C11—C8—C9—F4170.6 (2)C17—C14—C15—C16177.8 (3)
C5—C8—C9—F448.3 (3)C12—C11—C16—C150.9 (4)
C10—C8—C9—F6167.9 (2)C8—C11—C16—C15176.1 (3)
C11—C8—C9—F651.7 (3)C14—C15—C16—C111.9 (4)
C5—C8—C9—F670.7 (3)C13—C14—C17—O48.7 (4)
C10—C8—C9—F547.3 (3)C15—C14—C17—O4170.4 (3)
C11—C8—C9—F568.9 (3)C13—C14—C17—O3171.5 (3)
C5—C8—C9—F5168.8 (2)C15—C14—C17—O39.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.821.852.661 (2)169
O3—H3A···O1ii0.821.802.603 (2)165
C15—H15···F1iii0.932.483.382 (3)163
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H10F6O4
Mr392.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.7523 (16), 13.381 (3), 16.134 (3)
β (°) 102.294 (4)
V3)1635.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.35 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
8113, 2904, 1339
Rint0.053
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.071, 1.00
No. of reflections2904
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.821.852.661 (2)169
O3—H3A···O1ii0.821.802.603 (2)165
C15—H15···F1iii0.932.483.382 (3)163
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

This project was supported by the Natural Scientific Found­ation of Shaanxi Province, China (grant No. SJ08B11), the Key Laboratory Foundation of Shaanxi Provincial Education Office, China (Nos. 08JZ82, 07 J K435, 08 J K490, 09 J K816, 09 J K826 and 09 J K815) and the Special Scientific Research Foundation of Yan'an University (No. D2009-139).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLian, F.-Y., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2007). Acta Cryst. E63, o2870.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPotts, S., Bredenkamp, M. W. & Gertenbach, J.-A. (2007). Acta Cryst. E63, o2887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, R.-Q., Zhong, R.-Q., Du, M., Kiyobayashi, T. & Xu, Q. (2007). Chem. Commun. pp. 2467–2469.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds