metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(propane-1,3-diaminium) hexa­fluoridoferrate(III) fluoride trihydrate

aUnité de Recherche 99/UR12-30, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia, and bLaboratoire des Oxydes et Fluorures - UMR 6010 CNRS, Institut de Recherche en Ingénierie Moléculaire et Matériaux, Fonctionnels, IRIM2F FR CNRS 2775, Faculté des Sciences et Techniques, Université du Maine, Avenue Olivier Messiaen, 72085 LE MANS Cedex 9, France
*Correspondence e-mail: amor.benali@fsb.rnu.tn

(Received 6 April 2010; accepted 15 May 2010; online 22 May 2010)

The asymmetric unit of the title iron hybrid fluoride, (C3H12N2)2[FeF6]F·3H2O, contains two propane-1,3-diamin­ium [(H2dap)2+] cations, an octa­hedral [FeF6]3− anion, an isolated F anion and three water mol­ecules of solvation. Each [FeF6]3− anion is surrounded by four separate hydrogen-bonded water mol­ecules in the equatorial sites and by five separate aminium cation donor groups. The axial F atoms are only involved in N—H⋯F hydrogen bonds, resulting in a three-dimensional structure.

Related literature

For general background to hybrid fluorides, their synthesis and their applications, see: Ben Ali et al. (2007[Ben Ali, A., Dang, M. T., Grenèche, J.-M., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Solid State Chem. 180, 1911-1917.], 2009[Ben Ali, A., Grenèche, J.-M., Leblanc, M. & Maisonneuve, V. (2009). Solid State Sci. 11, 1631-1638.]); Adil et al. (2007[Adil, K. M., Ali Saada, M., Ben Ali, A., Body, M., Dang, M. T., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Fluorine Chem. 128, 404-412.]); Latroche et al. (2006[Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P., Lee, J.-H., Jhung, J.-S. & Férey, G. (2006). Angew. Chem. Int. Ed. 45, 8227-8231.]); Rother et al. (1998[Rother, G., Worzala, H. & Bentrup, U. (1998). Z. Kristallogr. New Cryst. Struct. 213, 119-120.]), Bentrup et al. (1998[Bentrup, U., Ahmadi, A., Kang, H. C. & Massa, W. (1998). Z. Anorg. Allg. Chem. 624, 1465-1470.]). For F⋯N inter­actions, see: Steiner (1998[Steiner, T. (1998). Acta Cryst. B54, 456-463.]). For bond-valence sum (BVS) calculations, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H12N2)2[FeF6]F·3H2O

  • Mr = 395.18

  • Triclinic, [P \overline 1]

  • a = 9.844 (1) Å

  • b = 9.847 (1) Å

  • c = 10.7740 (8) Å

  • α = 106.959 (7)°

  • β = 95.379 (6)°

  • γ = 118.914 (9)°

  • V = 839.35 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 295 K

  • 0.32 × 0.07 × 0.07 mm

Data collection
  • SIEMENS AED2 diffractometer

  • 2920 measured reflections

  • 2920 independent reflections

  • 2599 reflections with I > 2σ(I)

  • 3 standard reflections every 120 min intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.093

  • S = 1.14

  • 2920 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯F2i 0.89 2.03 2.826 (3) 148
N1—H1B⋯F5i 0.89 2.22 2.839 (3) 127
N2—H2A⋯F4ii 0.89 1.82 2.672 (3) 161
N2—H2B⋯F7ii 0.89 1.85 2.735 (3) 172
N2—H2C⋯O1Wiii 0.89 2.22 2.926 (3) 136
N2—H2C⋯F6iii 0.89 2.47 3.139 (3) 132
N3—H3A⋯F3ii 0.89 1.95 2.777 (3) 155
N3—H3A⋯F4ii 0.89 2.47 3.135 (3) 132
N3—H3B⋯F3iv 0.89 1.93 2.762 (3) 156
N4—H4A⋯F7v 0.89 1.86 2.728 (3) 164
N4—H4B⋯F6vi 0.89 2.09 2.886 (3) 149
N4—H4B⋯F1vi 0.89 2.33 3.029 (3) 135
O1W—H12⋯O3Wi 0.81 (4) 1.99 (4) 2.787 (4) 173 (4)
O2W—H21⋯F1vi 0.76 (4) 1.91 (4) 2.606 (3) 153 (4)
O2W—H22⋯F6i 0.76 (4) 1.99 (4) 2.747 (3) 171 (4)
O3W—H32⋯O2Wvii 0.73 (4) 2.04 (4) 2.766 (4) 173 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x-1, y, z; (iv) x, y, z+1; (v) -x+2, -y+1, -z+2; (vi) x, y+1, z+1; (vii) -x+1, -y+1, -z+1.

Data collection: STADI4 (Stoe & Cie, 1998[Stoe & Cie (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1998[Stoe & Cie (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure of the title compound (H2dap)2[FeF6](F).3H2O (I) consists of isolated FeF6 octahedra, diprotonated 1,3-diaminopropane (H2dap)2+ cations and three water molecules of solvation connected by a three-dimensional framework of hydrogen bonds in which isolated fluoride anions are located (Figure 1 and Figure 2). In (I) the [FeF6] complex anion adopts a slightly distorted octahedral environment, the Fe—F bond distance range [1.897 (2)–1.947 (2) Å] being typical of an octahedral ironIII environment. Each octahedral FeF63- anion is surrounded by four separate hydrogen-bonded water molecules in the equatorial sites and by seven separate aminium cation donor groups (Figure 3). The axial F atoms (F2, F4) are involved only in N–H···F interactions (Table 1). One of the equatorial F atom (F3), which has the longest Fe–F bond distance [1.947 (2)] Å), establishes three hydrogen bonds and consequently presents a low valence (0.47) with FeIII.

In fluoride metallates, "free" fluoride ions, are always surrounded by amine groups and their coordination number varies from 3 to 6. Also F···N distances increase with the coordination number (Steiner, 1998). In the title compound, "free" F ions adopt a tetrahedral coordination with four hydrogen atoms from four H2dap cations (Figure 4). The three hydrogen-bonded water molecules form trimer clusters, presenting various triangular environments with F acceptor atoms of the FeF6 octahedra and H donor atoms of the cation aminium groups (Figure 5). The infrared absorption spectrum of the title compound gives information on the organic moiety (C—C, C—N) and on the oxidation state of the iron atom, the presence of a vibrational band in the neighbourhood of 487 cm-1 being consistent with iron(III).

Related literature top

For general background to hybrid fluorides, their synthesis and their applications, see: Ben Ali et al. (2007, 2009); Adil et al. (2007); Latroche et al. (2006); Rother et al. (1998), Bentrup et al. (1998). For F···N interactions, see: Steiner (1998). For bond-valence sum (BVS) calculations, see: Brese & O'Keeffe (1991).

Experimental top

The title compound was prepared from a starting mixture of FeF3 (0.5 g) in 40% HF (3.0 ml) and ethanol (5 ml). 1,3-diaminopropane (2.7 ml) was added and mild hydrothermal conditions (463 K) were applied in a Teflon lined autoclave (25 ml). The resulting product was washed with ethanol and dried in air giving colourless single crystals.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms of the water molecules were located using difference methods and their positional and isotropic displacement parameters were refined. Other H atoms including those on the aminium groups were included in the refinement at calculated positions and refined with a common isotropic thermal parameter.

Structure description top

The structure of the title compound (H2dap)2[FeF6](F).3H2O (I) consists of isolated FeF6 octahedra, diprotonated 1,3-diaminopropane (H2dap)2+ cations and three water molecules of solvation connected by a three-dimensional framework of hydrogen bonds in which isolated fluoride anions are located (Figure 1 and Figure 2). In (I) the [FeF6] complex anion adopts a slightly distorted octahedral environment, the Fe—F bond distance range [1.897 (2)–1.947 (2) Å] being typical of an octahedral ironIII environment. Each octahedral FeF63- anion is surrounded by four separate hydrogen-bonded water molecules in the equatorial sites and by seven separate aminium cation donor groups (Figure 3). The axial F atoms (F2, F4) are involved only in N–H···F interactions (Table 1). One of the equatorial F atom (F3), which has the longest Fe–F bond distance [1.947 (2)] Å), establishes three hydrogen bonds and consequently presents a low valence (0.47) with FeIII.

In fluoride metallates, "free" fluoride ions, are always surrounded by amine groups and their coordination number varies from 3 to 6. Also F···N distances increase with the coordination number (Steiner, 1998). In the title compound, "free" F ions adopt a tetrahedral coordination with four hydrogen atoms from four H2dap cations (Figure 4). The three hydrogen-bonded water molecules form trimer clusters, presenting various triangular environments with F acceptor atoms of the FeF6 octahedra and H donor atoms of the cation aminium groups (Figure 5). The infrared absorption spectrum of the title compound gives information on the organic moiety (C—C, C—N) and on the oxidation state of the iron atom, the presence of a vibrational band in the neighbourhood of 487 cm-1 being consistent with iron(III).

For general background to hybrid fluorides, their synthesis and their applications, see: Ben Ali et al. (2007, 2009); Adil et al. (2007); Latroche et al. (2006); Rother et al. (1998), Bentrup et al. (1998). For F···N interactions, see: Steiner (1998). For bond-valence sum (BVS) calculations, see: Brese & O'Keeffe (1991).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1998); cell refinement: STADI4 (Stoe & Cie, 1998); data reduction: X-RED (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: DIAMOND (Brandenburg & Putz, 2004) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An view the (H2dap)2+ cation, the [FeF6]3- and F- anions and the water molecules of solvation (I). Thermal displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The three-dimensional H bonding network in the structure of (I).
[Figure 3] Fig. 3. The environment of the FeF6 octahedron.
[Figure 4] Fig. 4. The environment of the isolated fluoride anion.
[Figure 5] Fig. 5. The environment of the water molecules
Bis(propane-1,3-diaminium) hexafluoridoferrate(III) fluoride trihydrate top
Crystal data top
(C3H12N2)2[FeF6]F·3H2OZ = 2
Mr = 395.18F(000) = 414
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.844 (1) ÅCell parameters from 24 reflections
b = 9.847 (1) Åθ = 5–20°
c = 10.7740 (8) ŵ = 0.98 mm1
α = 106.959 (7)°T = 295 K
β = 95.379 (6)°Parallelepiped, colorless
γ = 118.914 (9)°0.32 × 0.07 × 0.07 mm
V = 839.35 (17) Å3
Data collection top
SIEMENS AED2
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 1111
2θ/ω scansk = 1011
2920 measured reflectionsl = 120
2920 independent reflections3 standard reflections every 120 min
2599 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.4679P]
where P = (Fo2 + 2Fc2)/3
2920 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
(C3H12N2)2[FeF6]F·3H2Oγ = 118.914 (9)°
Mr = 395.18V = 839.35 (17) Å3
Triclinic, P1Z = 2
a = 9.844 (1) ÅMo Kα radiation
b = 9.847 (1) ŵ = 0.98 mm1
c = 10.7740 (8) ÅT = 295 K
α = 106.959 (7)°0.32 × 0.07 × 0.07 mm
β = 95.379 (6)°
Data collection top
SIEMENS AED2
diffractometer
Rint = 0.000
2920 measured reflections3 standard reflections every 120 min
2920 independent reflections intensity decay: 4%
2599 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.42 e Å3
2920 reflectionsΔρmin = 0.35 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.84562 (4)0.12759 (4)0.22030 (3)0.02722 (13)
F10.7789 (3)0.0409 (2)0.04636 (19)0.0734 (6)
F20.9740 (2)0.29714 (19)0.15238 (16)0.0467 (4)
F30.66528 (18)0.1495 (2)0.16599 (17)0.0479 (4)
F40.7093 (2)0.0330 (2)0.28815 (18)0.0582 (5)
F50.91998 (19)0.30634 (19)0.39249 (15)0.0460 (4)
F61.0227 (2)0.1036 (2)0.2722 (2)0.0582 (5)
F70.79472 (17)0.17081 (17)0.74186 (14)0.0363 (3)
C10.6954 (3)0.3991 (3)0.6071 (2)0.0330 (5)
H1D0.70290.46450.55300.0476 (17)*
H1E0.68990.45600.69480.0476 (17)*
C20.5420 (3)0.2254 (3)0.5389 (3)0.0327 (5)
H2D0.54680.16740.45120.0476 (17)*
H2E0.53220.16000.59350.0476 (17)*
C30.3974 (3)0.2417 (3)0.5219 (3)0.0371 (6)
H3D0.40630.32030.60610.0476 (17)*
H3E0.39690.28690.45310.0476 (17)*
C40.6160 (3)0.3197 (3)0.9521 (3)0.0371 (6)
H4D0.55570.32221.01810.0476 (17)*
H4E0.56240.32150.87290.0476 (17)*
C50.7874 (3)0.4733 (3)1.0111 (3)0.0336 (5)
H5D0.84300.46771.08680.0476 (17)*
H5E0.84560.47430.94310.0476 (17)*
C60.7863 (3)0.6330 (3)1.0579 (3)0.0368 (6)
H6D0.71110.62710.98840.0476 (17)*
H6E0.74980.64381.13880.0476 (17)*
N10.8414 (2)0.3911 (2)0.6246 (2)0.0318 (4)
H1A0.82890.31950.66390.0476 (17)*
H1B0.92680.49280.67620.0476 (17)*
H1C0.85670.35620.54420.0476 (17)*
N20.2431 (2)0.0780 (3)0.4826 (2)0.0368 (5)
H2A0.23980.03990.54840.0476 (17)*
H2B0.23630.00430.40690.0476 (17)*
H2C0.16070.09150.46890.0476 (17)*
N30.6179 (3)0.1637 (3)0.9144 (2)0.0393 (5)
H3A0.51790.07510.87200.0476 (17)*
H3B0.65610.15620.98870.0476 (17)*
H3C0.68090.16610.85990.0476 (17)*
N40.9502 (3)0.7830 (2)1.0873 (2)0.0347 (5)
H4A1.01940.78791.15040.0476 (17)*
H4B0.94710.87561.11680.0476 (17)*
H4C0.98200.77531.01230.0476 (17)*
O1W1.0878 (3)0.2596 (3)0.5849 (3)0.0568 (6)
O2W0.6945 (3)0.7508 (4)0.7980 (3)0.0660 (7)
O3W0.6382 (3)0.4155 (3)0.2944 (3)0.0590 (6)
H111.046 (6)0.265 (6)0.526 (5)0.095 (18)*
H121.168 (5)0.352 (5)0.625 (4)0.067 (12)*
H210.717 (5)0.829 (5)0.858 (4)0.063 (12)*
H220.772 (5)0.782 (5)0.776 (4)0.064 (12)*
H310.649 (5)0.330 (4)0.265 (4)0.075 (12)*
H320.550 (5)0.373 (5)0.277 (4)0.054 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.02654 (19)0.02225 (19)0.02768 (19)0.00942 (14)0.01073 (14)0.00871 (14)
F10.0992 (16)0.0461 (10)0.0417 (10)0.0295 (11)0.0150 (10)0.0069 (8)
F20.0495 (9)0.0373 (8)0.0437 (9)0.0118 (7)0.0234 (7)0.0211 (7)
F30.0338 (8)0.0473 (9)0.0622 (10)0.0206 (7)0.0079 (7)0.0244 (8)
F40.0472 (10)0.0500 (10)0.0602 (10)0.0053 (8)0.0147 (8)0.0373 (9)
F50.0473 (9)0.0379 (8)0.0333 (8)0.0151 (7)0.0146 (7)0.0019 (6)
F60.0478 (10)0.0597 (11)0.0797 (13)0.0361 (9)0.0190 (9)0.0295 (10)
F70.0372 (8)0.0356 (7)0.0377 (8)0.0180 (6)0.0152 (6)0.0176 (6)
C10.0341 (13)0.0253 (11)0.0363 (13)0.0133 (10)0.0121 (10)0.0119 (10)
C20.0322 (13)0.0263 (12)0.0356 (13)0.0135 (10)0.0113 (10)0.0103 (10)
C30.0329 (13)0.0285 (12)0.0463 (15)0.0130 (11)0.0113 (11)0.0161 (11)
C40.0283 (12)0.0379 (14)0.0374 (13)0.0118 (11)0.0116 (10)0.0150 (11)
C50.0281 (12)0.0323 (13)0.0375 (13)0.0134 (11)0.0099 (10)0.0146 (11)
C60.0327 (13)0.0388 (14)0.0419 (14)0.0190 (11)0.0154 (11)0.0181 (11)
N10.0287 (10)0.0243 (10)0.0363 (11)0.0094 (8)0.0116 (8)0.0123 (8)
N20.0306 (11)0.0338 (11)0.0416 (12)0.0155 (9)0.0113 (9)0.0122 (9)
N30.0316 (11)0.0329 (11)0.0376 (11)0.0054 (9)0.0138 (9)0.0137 (9)
N40.0370 (11)0.0281 (10)0.0380 (11)0.0173 (9)0.0120 (9)0.0112 (9)
O1W0.0420 (13)0.0576 (15)0.0708 (16)0.0241 (12)0.0092 (11)0.0318 (13)
O2W0.0440 (14)0.0710 (17)0.0466 (13)0.0213 (12)0.0098 (11)0.0055 (13)
O3W0.0513 (15)0.0470 (13)0.0641 (15)0.0233 (12)0.0159 (12)0.0085 (11)
Geometric parameters (Å, º) top
Fe—F11.8968 (17)C5—H5E0.9700
Fe—F41.9083 (15)C6—N41.487 (3)
Fe—F51.9157 (14)C6—H6D0.9700
Fe—F61.9234 (17)C6—H6E0.9700
Fe—F21.9405 (14)N1—H1A0.8900
Fe—F31.9468 (15)N1—H1B0.8900
C1—N11.475 (3)N1—H1C0.8900
C1—C21.519 (3)N2—H2A0.8900
C1—H1D0.9700N2—H2B0.8900
C1—H1E0.9700N2—H2C0.8900
C2—C31.508 (3)N3—H3A0.8900
C2—H2D0.9700N3—H3B0.8900
C2—H2E0.9700N3—H3C0.8900
C3—N21.483 (3)N4—H4A0.8900
C3—H3D0.9700N4—H4B0.8900
C3—H3E0.9700N4—H4C0.8900
C4—N31.480 (3)O1W—H110.75 (5)
C4—C51.520 (3)O1W—H120.81 (4)
C4—H4D0.9700O2W—H210.76 (4)
C4—H4E0.9700O2W—H220.76 (4)
C5—C61.511 (3)O3W—H310.87 (4)
C5—H5D0.9700O3W—H320.73 (4)
F1—Fe—F492.30 (9)C6—C5—C4110.7 (2)
F1—Fe—F5177.01 (8)C6—C5—H5D109.5
F4—Fe—F590.69 (8)C4—C5—H5D109.5
F1—Fe—F689.93 (10)C6—C5—H5E109.5
F4—Fe—F691.86 (8)C4—C5—H5E109.5
F5—Fe—F690.04 (8)H5D—C5—H5E108.1
F1—Fe—F289.21 (8)N4—C6—C5111.1 (2)
F4—Fe—F2175.81 (8)N4—C6—H6D109.4
F5—Fe—F287.80 (7)C5—C6—H6D109.4
F6—Fe—F292.04 (8)N4—C6—H6E109.4
F1—Fe—F389.45 (9)C5—C6—H6E109.4
F4—Fe—F388.01 (8)H6D—C6—H6E108.0
F5—Fe—F390.59 (7)C1—N1—H1A109.5
F6—Fe—F3179.36 (8)C1—N1—H1B109.5
F2—Fe—F388.10 (7)H1A—N1—H1B109.5
N1—C1—C2112.05 (19)C1—N1—H1C109.5
N1—C1—H1D109.2H1A—N1—H1C109.5
C2—C1—H1D109.2H1B—N1—H1C109.5
N1—C1—H1E109.2C3—N2—H2A109.5
C2—C1—H1E109.2C3—N2—H2B109.5
H1D—C1—H1E107.9H2A—N2—H2B109.5
C3—C2—C1109.6 (2)C3—N2—H2C109.5
C3—C2—H2D109.7H2A—N2—H2C109.5
C1—C2—H2D109.7H2B—N2—H2C109.5
C3—C2—H2E109.7C4—N3—H3A109.5
C1—C2—H2E109.7C4—N3—H3B109.5
H2D—C2—H2E108.2H3A—N3—H3B109.5
N2—C3—C2112.1 (2)C4—N3—H3C109.5
N2—C3—H3D109.2H3A—N3—H3C109.5
C2—C3—H3D109.2H3B—N3—H3C109.5
N2—C3—H3E109.2C6—N4—H4A109.5
C2—C3—H3E109.2C6—N4—H4B109.5
H3D—C3—H3E107.9H4A—N4—H4B109.5
N3—C4—C5110.4 (2)C6—N4—H4C109.5
N3—C4—H4D109.6H4A—N4—H4C109.5
C5—C4—H4D109.6H4B—N4—H4C109.5
N3—C4—H4E109.6H11—O1W—H12106 (5)
C5—C4—H4E109.6H21—O2W—H22101 (4)
H4D—C4—H4E108.1H31—O3W—H32100 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···F2i0.892.032.826 (3)148
N1—H1B···F5i0.892.222.839 (3)127
N2—H2A···F4ii0.891.822.672 (3)161
N2—H2B···F7ii0.891.852.735 (3)172
N2—H2C···O1Wiii0.892.222.926 (3)136
N2—H2C···F6iii0.892.473.139 (3)132
N3—H3A···F3ii0.891.952.777 (3)155
N3—H3A···F4ii0.892.473.135 (3)132
N3—H3B···F3iv0.891.932.762 (3)156
N4—H4A···F7v0.891.862.728 (3)164
N4—H4B···F6vi0.892.092.886 (3)149
N4—H4B···F1vi0.892.333.029 (3)135
O1W—H12···O3Wi0.81 (4)1.99 (4)2.787 (4)173 (4)
O2W—H21···F1vi0.76 (4)1.91 (4)2.606 (3)153 (4)
O2W—H22···F6i0.76 (4)1.99 (4)2.747 (3)171 (4)
O3W—H32···O2Wvii0.73 (4)2.04 (4)2.766 (4)173 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x+2, y+1, z+2; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C3H12N2)2[FeF6]F·3H2O
Mr395.18
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.844 (1), 9.847 (1), 10.7740 (8)
α, β, γ (°)106.959 (7), 95.379 (6), 118.914 (9)
V3)839.35 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.32 × 0.07 × 0.07
Data collection
DiffractometerSIEMENS AED2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2920, 2920, 2599
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.093, 1.14
No. of reflections2920
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.35

Computer programs: STADI4 (Stoe & Cie, 1998), X-RED (Stoe & Cie, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), DIAMOND (Brandenburg & Putz, 2004) and ORTEP-3 (Farrugia, 1997), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···F2i0.892.032.826 (3)148.2
N1—H1B···F5i0.892.222.839 (3)126.6
N2—H2A···F4ii0.891.822.672 (3)160.9
N2—H2B···F7ii0.891.852.735 (3)172.3
N2—H2C···O1Wiii0.892.222.926 (3)136.0
N2—H2C···F6iii0.892.473.139 (3)132.0
N3—H3A···F3ii0.891.952.777 (3)154.6
N3—H3A···F4ii0.892.473.135 (3)131.6
N3—H3B···F3iv0.891.932.762 (3)155.9
N4—H4A···F7v0.891.862.728 (3)163.9
N4—H4B···F6vi0.892.092.886 (3)148.9
N4—H4B···F1vi0.892.333.029 (3)135.2
O1W—H12···O3Wi0.81 (4)1.99 (4)2.787 (4)173 (4)
O2W—H21···F1vi0.76 (4)1.91 (4)2.606 (3)153 (4)
O2W—H22···F6i0.76 (4)1.99 (4)2.747 (3)171 (4)
O3W—H32···O2Wvii0.73 (4)2.04 (4)2.766 (4)173 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x+2, y+1, z+2; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Professor L. S. Smiri for helpful discussions.

References

First citationAdil, K. M., Ali Saada, M., Ben Ali, A., Body, M., Dang, M. T., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Fluorine Chem. 128, 404–412.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBen Ali, A., Dang, M. T., Grenèche, J.-M., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Solid State Chem. 180, 1911–1917.  Web of Science CSD CrossRef CAS Google Scholar
First citationBen Ali, A., Grenèche, J.-M., Leblanc, M. & Maisonneuve, V. (2009). Solid State Sci. 11, 1631–1638.  CAS Google Scholar
First citationBentrup, U., Ahmadi, A., Kang, H. C. & Massa, W. (1998). Z. Anorg. Allg. Chem. 624, 1465–1470.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLatroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P., Lee, J.-H., Jhung, J.-S. & Férey, G. (2006). Angew. Chem. Int. Ed. 45, 8227–8231.  Web of Science CrossRef CAS Google Scholar
First citationRother, G., Worzala, H. & Bentrup, U. (1998). Z. Kristallogr. New Cryst. Struct. 213, 119–120.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1998). Acta Cryst. B54, 456–463.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds