supplementary materials


dn2608 scheme

Acta Cryst. (2010). E66, o2820-o2821    [ doi:10.1107/S1600536810040614 ]

(2-Hydroxy-7-methoxynaphthalen-1-yl)(4-methylphenyl)methanone

A. Nagasawa, R. Mitsui, A. Okamoto and N. Yonezawa

Abstract top

In the title compound, C19H16O3, an intramolecular O-H...O=C hydrogen bond is formed between the hydroxy and carbonyl groups on the naphthalene ring system, resulting in an S(6) ring. The angles between the C=O bond vector and the least-squares planes of the naphthalene ring system and the benzene ring are 27.63 (6) and 47.99 (7)°, respectively. The dihedral angle between the latter planes is 61.39 (5)°. In the crystal, two molecules are connected by pairs of intermolecular O-H...O=C hydrogen bonds, forming centrosymmetric dimers with an R22(4) graph-set motif. The molecular packing features C-H...[pi] interactions.

Comment top

In the course of our study on selective peri-aroylation of 2,7-dimethoxynaphthalene (Okamoto & Yonezawa, 2009), the crystal structures of several 1-monoaroylated naphthalene compounds have been clarified along with 1,8-diaroylnaphthalene. Furthermore, selective demethylation reaction of the 1-monoaroylated 2,7-dimethoxynaphthalene compounds has been proved to yield the 1-monoaroyl-2-hydroxynaphthalene compounds, which are rather susceptible to imination reaction. In this course, we recently reported crystal structure of several imine compounds prepared from 1-monoaroylated naphthalene derivatives having 2-hydroxy group exemplified by 1-[(4-chlorophenyl)(phenylimino)methyl]-7-methoxy-2-naphthol-1,4- diazabicyclo[2.2.2]octane (2/1) (Nagasawa et al., 2010a) and 1-[phenyl(3-nitrophenylimino)methyl]-7-methoxy-2-naphthol (Nagasawa et al., 2010c) derived from (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2008) and (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa et al., 2010b), respectively. As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene homologues, we prepared and analysed the crystal structure of the title compound (I).

In the molecule (I), the intramolecular O—H···OC hydrogen bond that forms a six-membered S(6) ring (Etter et al., 1990; Bernstein et al., 1995) including carbonyl and hydroxy groups on the naphthalene ring (Table 1, Fig. 1). The conformation of these groups resembles to that of (2-hydroxy-7-methoxynaphthalen-1-yl)(phenyl)methanone (Nagasawa et al., 2010b). The angles of CO bond vector against the least-squares plane of the naphthalene ring (C1–C10) and benzene ring (C12–C17) are 27.63 (6) and 47.99 (7)°, respectively. The dihedral angle between the naphthalene ring (C1–C10) and benzene ring (C12–C17) is 61.39 (5)°.

In the crystal structure, O—H···OC intermolecular hydrogen bonds between the hydroxy group and the carbonyl one on the naphthalene ring (Table 1) form a centrosymmetric dimer (Fig. 2) with a R22(4) graph set motif (Etter et al., 1990; Bernstein et al., 1995). The molecular packing of (I) is mainly stabilized by intermolecular C—H···π hydrogen bond involving the centroid CT1 of the C5—C10 ring and the centroid CT2 of the C12–C17 phenyl ring. (Table 1).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Mitsui et al. (2008); Nagasawa et al. (2010a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

To a solution of 1-(4-methylbenzoyl)-2,7-dimethoxynaphthalene (3.07 g, 10 mmol) in CH2Cl2 (100 ml) was added AlCl3 (6.65 g, 50 mmol). The reaction mixture was refluxed for 30 min giving a dark red solution, which was then poured into H2O (30 ml). The aqueous layer was extracted with CHCl3 (30 ml × 3). The combined organic layers were washed with brine (30 ml × 3) and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by recrystallization from hexane to give compound (I) as yellow platelets (m.p. 385.5–386.00 K, yield 1.76 g, 60%).

Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 11.40 (s, 1H), 7.83 (d, J = 8.9 Hz, 1H), 7.61 (d, J = 8.6 Hz, 1H), 7.52 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 7.07 (d, J = 8.9 Hz, 1H), 6.89 (dd, J = 8.9, 2.4 Hz, 1H), 6.64 (d, J = 2.4 Hz, 1H), 3.31 (s, 3H), 2.41 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 200.0, 162.3, 158.1, 143.2, 138.0, 136.1, 134.2, 130.0, 129.5, 129.3, 123.8, 116.5, 115.8, 114.0, 106.6, 54.5, 21.7; IR (KBr): 3443, 2929, 1620, 1561, 1514, 1233; HRMS (m/z): [M + H]+ calcd for C19H17O3, 293.1178; found, 293.1189.

Refinement top

All the H-atoms could be located in difference Fourier maps. The coordinates of the OH hydrogen atom were refined using restraint (O1—H1 = 0.95 (2) Å) with Uiso(H) = 1.5Ueq(O). The H atoms attached to carbon were introduced in calculated positions and treated as riding on their parent atoms with C—H= 0.98 Å (methyl) or 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP -3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability. H atoms are represented as small spheres of arbitrary radii. Intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A crystal packing diagram of compound (I), viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
(2-Hydroxy-7-methoxynaphthalen-1-yl)(4-methylphenyl)methanone top
Crystal data top
C19H16O3F(000) = 616
Mr = 292.32Dx = 1.305 Mg m3
Monoclinic, P21/cMelting point = 385.5–386.0 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 11.1599 (2) ÅCell parameters from 21159 reflections
b = 6.05387 (11) Åθ = 4.0–68.2°
c = 22.0153 (4) ŵ = 0.71 mm1
β = 90.317 (1)°T = 193 K
V = 1487.35 (5) Å3Block, colorless
Z = 40.60 × 0.50 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2729 independent reflections
Radiation source: rotating anode2493 reflections with I > 2σ(I)
graphiteRint = 0.029
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.0°
ω scansh = 1313
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 77
Tmin = 0.676, Tmax = 0.816l = 2626
25155 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.4274P]
where P = (Fo2 + 2Fc2)/3
2729 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C19H16O3V = 1487.35 (5) Å3
Mr = 292.32Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.1599 (2) ŵ = 0.71 mm1
b = 6.05387 (11) ÅT = 193 K
c = 22.0153 (4) Å0.60 × 0.50 × 0.30 mm
β = 90.317 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2729 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2493 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.816Rint = 0.029
25155 measured reflectionsθmax = 68.2°
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106Δρmax = 0.28 e Å3
S = 1.03Δρmin = 0.15 e Å3
2729 reflectionsAbsolute structure: ?
204 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39263 (8)0.16739 (19)0.46840 (5)0.0479 (3)
H10.4401 (16)0.298 (3)0.4719 (9)0.072*
O20.83634 (10)0.07553 (19)0.23277 (5)0.0539 (3)
O30.56764 (8)0.43447 (17)0.45225 (4)0.0464 (3)
C10.55371 (10)0.1035 (2)0.39700 (5)0.0324 (3)
C20.44354 (11)0.0500 (2)0.42366 (6)0.0391 (3)
C30.38007 (12)0.1414 (3)0.40634 (7)0.0476 (4)
H30.30620.17610.42540.057*
C40.42384 (12)0.2755 (3)0.36282 (7)0.0473 (4)
H40.38140.40650.35270.057*
C50.53176 (12)0.2259 (2)0.33185 (6)0.0390 (3)
C60.57478 (13)0.3633 (2)0.28499 (6)0.0456 (4)
H60.53240.49470.27520.055*
C70.67500 (14)0.3123 (2)0.25359 (6)0.0473 (4)
H70.70320.40820.22260.057*
C80.73726 (12)0.1148 (2)0.26736 (6)0.0401 (3)
C90.69806 (11)0.0239 (2)0.31228 (5)0.0344 (3)
H90.73940.15840.31980.041*
C100.59639 (11)0.0312 (2)0.34765 (5)0.0325 (3)
C110.62050 (10)0.2897 (2)0.42351 (5)0.0316 (3)
C120.75391 (10)0.3095 (2)0.42076 (5)0.0297 (3)
C130.82996 (11)0.1359 (2)0.43596 (5)0.0340 (3)
H130.79780.00450.44620.041*
C140.95292 (11)0.1683 (2)0.43615 (6)0.0385 (3)
H141.00420.04910.44680.046*
C151.00296 (11)0.3713 (2)0.42111 (6)0.0386 (3)
C160.92554 (12)0.5426 (2)0.40584 (6)0.0399 (3)
H160.95770.68220.39490.048*
C170.80264 (11)0.5137 (2)0.40630 (6)0.0349 (3)
H170.75130.63410.39670.042*
C180.90578 (16)0.1156 (3)0.24644 (8)0.0635 (5)
H18A0.85770.24830.23890.095*
H18B0.97700.11830.22060.095*
H18C0.93040.11180.28920.095*
C191.13644 (12)0.4059 (3)0.42216 (7)0.0555 (4)
H19A1.16080.48430.38530.083*
H19B1.17690.26230.42400.083*
H19C1.15860.49350.45790.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0303 (5)0.0623 (7)0.0510 (6)0.0003 (4)0.0060 (4)0.0009 (5)
O20.0604 (6)0.0584 (7)0.0431 (5)0.0026 (5)0.0108 (5)0.0121 (5)
O30.0406 (5)0.0471 (6)0.0514 (6)0.0026 (4)0.0110 (4)0.0114 (5)
C10.0291 (6)0.0354 (7)0.0327 (6)0.0000 (5)0.0054 (5)0.0051 (5)
C20.0296 (6)0.0481 (8)0.0396 (7)0.0002 (6)0.0050 (5)0.0082 (6)
C30.0324 (7)0.0561 (9)0.0541 (8)0.0112 (6)0.0057 (6)0.0105 (7)
C40.0416 (7)0.0441 (8)0.0560 (8)0.0145 (6)0.0166 (6)0.0096 (7)
C50.0435 (7)0.0334 (7)0.0398 (7)0.0028 (6)0.0157 (5)0.0046 (5)
C60.0557 (9)0.0342 (7)0.0466 (8)0.0024 (6)0.0201 (6)0.0019 (6)
C70.0633 (9)0.0395 (8)0.0389 (7)0.0102 (7)0.0136 (6)0.0106 (6)
C80.0470 (7)0.0423 (8)0.0309 (6)0.0055 (6)0.0032 (5)0.0022 (5)
C90.0398 (7)0.0318 (6)0.0314 (6)0.0002 (5)0.0057 (5)0.0008 (5)
C100.0333 (6)0.0318 (6)0.0322 (6)0.0004 (5)0.0096 (5)0.0043 (5)
C110.0321 (6)0.0348 (6)0.0281 (6)0.0017 (5)0.0015 (4)0.0013 (5)
C120.0318 (6)0.0309 (6)0.0263 (5)0.0006 (5)0.0018 (4)0.0041 (5)
C130.0373 (6)0.0297 (6)0.0350 (6)0.0010 (5)0.0019 (5)0.0011 (5)
C140.0364 (7)0.0419 (7)0.0371 (6)0.0080 (6)0.0061 (5)0.0001 (5)
C150.0331 (6)0.0498 (8)0.0330 (6)0.0039 (6)0.0020 (5)0.0047 (6)
C160.0407 (7)0.0354 (7)0.0436 (7)0.0088 (6)0.0003 (5)0.0008 (6)
C170.0377 (7)0.0293 (6)0.0377 (6)0.0008 (5)0.0033 (5)0.0015 (5)
C180.0617 (10)0.0691 (11)0.0600 (10)0.0069 (9)0.0244 (8)0.0082 (8)
C190.0334 (7)0.0789 (12)0.0542 (9)0.0074 (7)0.0031 (6)0.0031 (8)
Geometric parameters (Å, °) top
O1—C21.3433 (17)C9—C101.4195 (18)
O1—H10.953 (15)C9—H90.9500
O2—C81.3670 (17)C11—C121.4953 (16)
O2—C181.424 (2)C12—C171.3885 (18)
O3—C111.2332 (15)C12—C131.3907 (17)
C1—C21.4031 (17)C13—C141.3862 (18)
C1—C101.4414 (18)C13—H130.9500
C1—C111.4704 (17)C14—C151.390 (2)
C2—C31.410 (2)C14—H140.9500
C3—C41.349 (2)C15—C161.390 (2)
C3—H30.9500C15—C191.5043 (18)
C4—C51.420 (2)C16—C171.3827 (18)
C4—H40.9500C16—H160.9500
C5—C61.411 (2)C17—H170.9500
C5—C101.4237 (18)C18—H18A0.9800
C6—C71.354 (2)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—C81.415 (2)C19—H19A0.9800
C7—H70.9500C19—H19B0.9800
C8—C91.3708 (18)C19—H19C0.9800
C2—O1—H1105.1 (11)O3—C11—C12116.30 (11)
C8—O2—C18117.68 (11)C1—C11—C12123.23 (11)
C2—C1—C10118.60 (12)C17—C12—C13119.27 (11)
C2—C1—C11117.02 (11)C17—C12—C11118.17 (11)
C10—C1—C11124.33 (11)C13—C12—C11122.42 (11)
O1—C2—C1124.04 (12)C14—C13—C12119.75 (12)
O1—C2—C3114.79 (12)C14—C13—H13120.1
C1—C2—C3121.11 (13)C12—C13—H13120.1
C4—C3—C2120.21 (13)C13—C14—C15121.57 (12)
C4—C3—H3119.9C13—C14—H14119.2
C2—C3—H3119.9C15—C14—H14119.2
C3—C4—C5121.68 (13)C16—C15—C14117.84 (12)
C3—C4—H4119.2C16—C15—C19120.94 (13)
C5—C4—H4119.2C14—C15—C19121.22 (13)
C6—C5—C4121.28 (13)C17—C16—C15121.28 (12)
C6—C5—C10119.50 (13)C17—C16—H16119.4
C4—C5—C10119.21 (13)C15—C16—H16119.4
C7—C6—C5121.63 (13)C16—C17—C12120.26 (12)
C7—C6—H6119.2C16—C17—H17119.9
C5—C6—H6119.2C12—C17—H17119.9
C6—C7—C8119.29 (13)O2—C18—H18A109.5
C6—C7—H7120.4O2—C18—H18B109.5
C8—C7—H7120.4H18A—C18—H18B109.5
O2—C8—C9123.90 (13)O2—C18—H18C109.5
O2—C8—C7115.18 (12)H18A—C18—H18C109.5
C9—C8—C7120.92 (13)H18B—C18—H18C109.5
C8—C9—C10120.74 (12)C15—C19—H19A109.5
C8—C9—H9119.6C15—C19—H19B109.5
C10—C9—H9119.6H19A—C19—H19B109.5
C9—C10—C5117.76 (12)C15—C19—H19C109.5
C9—C10—C1123.31 (11)H19A—C19—H19C109.5
C5—C10—C1118.90 (12)H19B—C19—H19C109.5
O3—C11—C1120.38 (11)
Hydrogen-bond geometry (Å, °) top
CT1 and CT2 are the centroids of the C5–C10 and C12-C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.95 (2)1.70 (2)2.5618 (14)148 (2)
O1—H1···O3i0.95 (2)2.33 (2)3.0083 (16)128 (1)
C6—H6···CT1ii0.952.713.5203 (13)144
C17—H17···CT1iii0.952.763.5492 (12)141
C19—H19C···CT2iv0.982.883.7834 (16)154
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) −x+2, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
CT1 and CT2 are the centroids of the C5–C10 and C12-C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.95 (2)1.70 (2)2.5618 (14)148 (2)
O1—H1···O3i0.95 (2)2.33 (2)3.0083 (16)128 (1)
C6—H6···CT1ii0.952.713.5203 (13)144
C17—H17···CT1iii0.952.763.5492 (12)141
C19—H19C···CT2iv0.982.883.7834 (16)154
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) −x+2, −y+1, −z+1.
Acknowledgements top

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.

Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497.

Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010a). Acta Cryst. E66, o2498.

Nagasawa, A., Mitsui, R., Kato, Y., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, o2677.

Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010c). Acta Cryst. E66, o2738.

Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.