organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2,3,4,5,6-Penta­fluoro­phen­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 6 August 2010; accepted 5 October 2010; online 9 October 2010)

The title compound, C8H2F5N3S, was synthesized by the reaction of perfluoro­benzoic acid and thio­semicarbazide. The dihedral angle between the thia­diazole and perfluoro­phenyl ring is 35.41 (6)°. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Related literature

For the fungicidal and herbicidal activity of thia­diazole deriv­atives, see: Chen et al. (2000[Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315.]); Kidwai et al. (2000[Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46-48.]); Vicentini et al. (1998[Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.]) and for their insecticidal activity, see: Arun et al. (1999[Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998-1001.]); Wasfy et al. (1996[Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect B, 35, 1218-1220.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H2F5N3S

  • Mr = 267.19

  • Monoclinic, P 21 /c

  • a = 11.897 (2) Å

  • b = 7.0680 (14) Å

  • c = 11.553 (2) Å

  • β = 104.66 (3)°

  • V = 939.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.889, Tmax = 0.961

  • 3428 measured reflections

  • 1709 independent reflections

  • 1283 reflections with I > 2σ(I)

  • Rint = 0.064

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.128

  • S = 1.00

  • 1709 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.18 3.001 (4) 160
N1—H1B⋯N3ii 0.86 2.19 3.013 (3) 161
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal and herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998); some show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996).

We report here the crystal structure of the title compound,(I). The molecular structure of (I) is shown in Fig.1, in which the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Ring(C1/S/C2/N3/N2) is planar, and the mean deviation from plane is 0.0012 Angstroms. The dihedral angle between the thiadiazole and perfluorophenyl ring is 35.41 (6)°. In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For the fungicidal and herbicidal activity of thiadiazole derivatives, see: Chen et al. (2000); Kidwai et al. (2000); Vicentini et al. (1998) and for their insecticidal activity, see: Arun et al. (1999); Wasfy et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

Perfluorobenzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), which is heated under reflux for 4 h. The reaction mixture was left to cool to room temperature, poured into ice water, filtered, and the filter cake was crystallized from acetone to give pure compound (I) (m.p. 523–525 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H···N hydrogen bonds.
5-(2,3,4,5,6-Pentafluorophenyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C8H2F5N3SF(000) = 528
Mr = 267.19Dx = 1.888 Mg m3
Monoclinic, P21/cMelting point = 523–525 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.897 (2) ÅCell parameters from 25 reflections
b = 7.0680 (14) Åθ = 9–13°
c = 11.553 (2) ŵ = 0.40 mm1
β = 104.66 (3)°T = 293 K
V = 939.8 (3) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1283 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 140
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.889, Tmax = 0.961l = 1313
3428 measured reflections3 standard reflections every 200 reflections
1709 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2]
where P = (Fo2 + 2Fc2)/3
1709 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H2F5N3SV = 939.8 (3) Å3
Mr = 267.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.897 (2) ŵ = 0.40 mm1
b = 7.0680 (14) ÅT = 293 K
c = 11.553 (2) Å0.30 × 0.20 × 0.10 mm
β = 104.66 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1283 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.064
Tmin = 0.889, Tmax = 0.9613 standard reflections every 200 reflections
3428 measured reflections intensity decay: 1%
1709 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
1709 reflectionsΔρmin = 0.29 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.82940 (7)0.06662 (10)0.05893 (6)0.0461 (3)
F10.78775 (15)0.3360 (2)0.00245 (14)0.0569 (5)
C10.9155 (2)0.2602 (4)0.0479 (2)0.0404 (6)
N10.9659 (2)0.3683 (4)0.1416 (2)0.0524 (6)
H1A1.01050.46010.13300.063*
H1B0.95370.34590.21060.063*
C20.8165 (2)0.0294 (4)0.0925 (2)0.0389 (6)
F20.65099 (17)0.6042 (2)0.12921 (18)0.0685 (6)
N20.9298 (2)0.2855 (4)0.06011 (19)0.0472 (6)
F30.53266 (17)0.5342 (3)0.35867 (18)0.0747 (6)
N30.8725 (2)0.1519 (3)0.13946 (19)0.0451 (6)
C30.7437 (2)0.1198 (4)0.1630 (2)0.0387 (6)
F40.55308 (16)0.1942 (3)0.45890 (14)0.0689 (6)
C40.7312 (2)0.2972 (4)0.1154 (2)0.0429 (6)
F50.68393 (17)0.0780 (2)0.33282 (15)0.0609 (5)
C50.6609 (3)0.4358 (4)0.1800 (3)0.0489 (7)
C60.6009 (2)0.4016 (4)0.2954 (3)0.0502 (7)
C70.6116 (2)0.2282 (4)0.3459 (2)0.0482 (7)
C80.6812 (2)0.0900 (4)0.2800 (2)0.0453 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0633 (5)0.0429 (4)0.0347 (4)0.0129 (3)0.0171 (3)0.0005 (3)
F10.0665 (10)0.0469 (10)0.0521 (10)0.0049 (8)0.0052 (8)0.0130 (8)
C10.0472 (14)0.0406 (15)0.0352 (13)0.0044 (12)0.0139 (12)0.0027 (11)
N10.0725 (16)0.0530 (15)0.0339 (12)0.0221 (13)0.0176 (11)0.0081 (10)
C20.0477 (14)0.0358 (14)0.0354 (13)0.0023 (11)0.0147 (12)0.0012 (11)
F20.0801 (13)0.0418 (10)0.0824 (14)0.0148 (9)0.0184 (11)0.0058 (9)
N20.0600 (14)0.0494 (14)0.0368 (12)0.0185 (11)0.0206 (11)0.0092 (10)
F30.0815 (13)0.0659 (13)0.0740 (13)0.0330 (10)0.0145 (11)0.0233 (10)
N30.0586 (14)0.0442 (13)0.0362 (12)0.0136 (11)0.0191 (11)0.0087 (10)
C30.0450 (14)0.0351 (14)0.0378 (13)0.0027 (11)0.0139 (11)0.0040 (11)
F40.0762 (12)0.0821 (14)0.0411 (9)0.0162 (11)0.0012 (8)0.0056 (9)
C40.0458 (15)0.0405 (15)0.0426 (15)0.0010 (12)0.0114 (12)0.0025 (12)
F50.0840 (12)0.0443 (10)0.0477 (10)0.0082 (9)0.0041 (9)0.0086 (7)
C50.0553 (16)0.0349 (15)0.0603 (18)0.0060 (13)0.0217 (14)0.0005 (13)
C60.0508 (16)0.0486 (17)0.0531 (17)0.0159 (14)0.0165 (14)0.0172 (13)
C70.0492 (16)0.0547 (18)0.0406 (15)0.0051 (13)0.0108 (13)0.0087 (13)
C80.0542 (16)0.0404 (15)0.0429 (15)0.0015 (12)0.0155 (13)0.0008 (11)
Geometric parameters (Å, º) top
S—C11.733 (3)N2—N31.372 (3)
S—C21.737 (3)F3—C61.331 (3)
F1—C41.336 (3)C3—C81.383 (4)
C1—N21.313 (3)C3—C41.392 (4)
C1—N11.337 (3)F4—C71.336 (3)
N1—H1A0.8600C4—C51.379 (4)
N1—H1B0.8600F5—C81.339 (3)
C2—N31.292 (3)C5—C61.365 (5)
C2—C31.473 (4)C6—C71.377 (4)
F2—C51.345 (3)C7—C81.379 (4)
C1—S—C287.05 (12)F1—C4—C5118.0 (3)
N2—C1—N1123.5 (2)F1—C4—C3119.5 (2)
N2—C1—S113.5 (2)C5—C4—C3122.4 (3)
N1—C1—S122.92 (19)F2—C5—C6120.1 (3)
C1—N1—H1A120.0F2—C5—C4120.0 (3)
C1—N1—H1B120.0C6—C5—C4119.9 (3)
H1A—N1—H1B120.0F3—C6—C5120.5 (3)
N3—C2—C3122.8 (2)F3—C6—C7120.2 (3)
N3—C2—S113.4 (2)C5—C6—C7119.3 (2)
C3—C2—S123.72 (19)F4—C7—C6119.5 (2)
C1—N2—N3112.3 (2)F4—C7—C8120.3 (3)
C2—N3—N2113.8 (2)C6—C7—C8120.2 (3)
C8—C3—C4116.0 (2)F5—C8—C7117.2 (2)
C8—C3—C2121.8 (2)F5—C8—C3120.8 (2)
C4—C3—C2122.2 (2)C7—C8—C3122.1 (3)
C2—S—C1—N20.2 (2)F1—C4—C5—C6179.5 (3)
C2—S—C1—N1177.7 (3)C3—C4—C5—C60.3 (4)
C1—S—C2—N30.2 (2)F2—C5—C6—F30.4 (4)
C1—S—C2—C3176.3 (2)C4—C5—C6—F3179.9 (3)
N1—C1—N2—N3177.7 (3)F2—C5—C6—C7179.7 (2)
S—C1—N2—N30.2 (3)C4—C5—C6—C70.2 (4)
C3—C2—N3—N2176.4 (2)F3—C6—C7—F40.0 (4)
S—C2—N3—N20.2 (3)C5—C6—C7—F4179.9 (3)
C1—N2—N3—C20.0 (4)F3—C6—C7—C8179.3 (3)
N3—C2—C3—C834.3 (4)C5—C6—C7—C80.8 (4)
S—C2—C3—C8141.9 (2)F4—C7—C8—F52.1 (4)
N3—C2—C3—C4147.3 (3)C6—C7—C8—F5177.2 (3)
S—C2—C3—C436.4 (4)F4—C7—C8—C3179.6 (2)
C8—C3—C4—F1179.2 (2)C6—C7—C8—C31.1 (4)
C2—C3—C4—F10.8 (4)C4—C3—C8—F5177.6 (2)
C8—C3—C4—C50.0 (4)C2—C3—C8—F50.8 (4)
C2—C3—C4—C5178.4 (3)C4—C3—C8—C70.6 (4)
F1—C4—C5—F20.1 (4)C2—C3—C8—C7179.1 (3)
C3—C4—C5—F2179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.183.001 (4)160
N1—H1B···N3ii0.862.193.013 (3)161
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H2F5N3S
Mr267.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.897 (2), 7.0680 (14), 11.553 (2)
β (°) 104.66 (3)
V3)939.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.889, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
3428, 1709, 1283
Rint0.064
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.128, 1.00
No. of reflections1709
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.183.001 (4)160
N1—H1B···N3ii0.862.193.013 (3)161
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank Professor Hua-qin Wang of the Analysis Centre, Nanjing University, for carrying out the X-ray crystallographic analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationArun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998–1001.
First citationChen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.  Web of Science CrossRef PubMed CAS
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationKidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46–48.  CAS
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationVicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.  CrossRef CAS
First citationWasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect B, 35, 1218–1220.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds