organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2R,8R)-2,2-Di­chloro-3,7,7,10-tetra­methyltri­cyclo­[6.4.0.01,3]dodec-10-en-9-one

aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, URAC16,Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta BP 1014 Rabat, Morocco
*Correspondence e-mail: abenharref@yahoo.fr

(Received 1 October 2010; accepted 7 October 2010; online 23 October 2010)

The title compound, C16H22Cl2O, was synthesized from β-himachalene, which was isolated from essential oil of the Atlas cedar (cedrus atlantica). The asymmetric unit contains two independent mol­ecules, in each of which the six-membered ring shows a half-chair conformation, whereas the seven-membered ring displays a boat conformation. The dihedral angle between the two rings is slightly different in the two mol­ecules [63.22 (13) and 61.81 (14)°].

Related literature

For the isolation of β-himachalene, see: Joseph & Dev (1968[Joseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841-3859.]); Plattier & Teiseire (1974[Plattier, M. & Teiseire, P. (1974). Recherche, 19, 131-144.]). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998[Lassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641-2651.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]); Dakir et al. (2004[Dakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001-2008.]). For its biological activity, see: Daoubi et al. (2004[Daoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez -Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22Cl2O

  • Mr = 301.24

  • Monoclinic, P 21

  • a = 6.6680 (7) Å

  • b = 18.7760 (16) Å

  • c = 12.7696 (12) Å

  • β = 90.430 (3)°

  • V = 1598.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 298 K

  • 0.27 × 0.18 × 0.12 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 11524 measured reflections

  • 5817 independent reflections

  • 4348 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 1.00

  • 5817 reflections

  • 351 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 1791 Friedel pairs

  • Flack parameter: 0.01 (5)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The essential oil of the Atlas cedar (cedrus atlantica) consists mainly (50%) of a bicyclic hydrocarbon sesquiterpene called β-himachalene (Joseph & Dev 1968; Plattier & Teiseire 1974). The reactivity of this sesquiterpene has been studied extensively by our team in order to prepare new products having biological proprieties (Lassaba et al., 1998; Chekroun et al., 2000; El Jamili et al., 2002; Sbai et al., 2002; Dakir et al., 2004). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). Thus the action of one equivalent of dichlorocarbene, generated in situ from chloroform and in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, followed by epoxydation with m-chloroperbenzoic acid (m-CPBA) gives a mixture of two diasteroisomers:(1S,3R,8S,9S,10R)-2,2-dichloro-9,10-epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane (X, 70%) and (1S,3R,8S,9R,10S)-2,2-dichloro-9,10-epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane (Y, 30%) (Sbai et al., 2002). By treatment of the majority isomer (X) with hydrochloric acid (see experimental) we obtained the title compound in 70% yield. The structure of (I) was established by 1H and 13C NMR and confirmed by its single crystal X-ray structure. The asymmetric unit contains two crystallographically independent molecules (Fig.1). Each molecule is built up from two fused six and seven-membered rings with the dichlorocyclopropyl ring at positions 1 and 2 in α-configuration. The six-membered ring shows a half chair conformation, whereas the seven-membered ring displays a boat conformation. In the first molecule (C1 to C16), the dihedral angle between the rings is 63.22 (13)°. The corresponding value in the second molecule (C17 to C31) is 61.81 (14)°. Owing to the presence of the Cl atoms, the absolute configuration could be fully confirmed to be (1S,2R,8R) for both molecules (Flack & Bernardinelli, 2000).

Related literature top

For the isolation of β-himachalene, see: Joseph & Dev (1968); Plattier & Teiseire (1974). For the reactivity of this sesquiterpene, see: Lassaba et al. (1998); Chekroun et al. (2000); El Jamili et al.(2002); Sbai et al. (2002); Dakir et al. (2004). For its biological activity, see: Daoubi et al. (2004).

Experimental top

A solution is prepared by bubbling gaseous hydrochloric acid into 40 ml of chloroform for 1 minute. Then 1 g (3.30 mmol) of (1S,3R,8S,9S,10R)-2,2-dichloro-9,10-epoxy-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodecane (X) dissolved in 20 ml of chloroform, is added to this solution and the resulting mixture is stirred for 1 h. After evaporation of the solvent and chromatography of the residue obtained on a column of silica gel, using as eluent hexane-ethyl acetate (95/ 5), the corresponding enol is isolated (yield: 0.6 g, 1.98 mmol, 60%). A solution of the enol (0.5 g, 1.65 mmol) in dichloromethane (20 ml) was added to a suspention of the complex (CrO3: pyridine) (10 mmol) in another 45 ml of dichloromethane. The reaction mixture was stirred at room temperature for 1 h, then filtered through an alumina column. After evaporation of the solvent, the title compound, (1S,2R,8R)-2,2-Dichloro-3,7,7,10-tetramethyl-tricyclo[6.4.0.01,3]dodec-10-en-9-one, is obtained (0.35 g, 70%). Crystals suitable for X-ray analysis were produced by recrystallization from n-pentane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXS97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(1S,2R,8R)-2,2-Dichloro-3,7,7,10- tetramethyltricyclo[6.4.0.01,3]dodec-10-en-9-one top
Crystal data top
C16H22Cl2OF(000) = 640
Mr = 301.24Dx = 1.252 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11524 reflections
a = 6.6680 (7) Åθ = 2.3–28.2°
b = 18.7760 (16) ŵ = 0.40 mm1
c = 12.7696 (12) ÅT = 298 K
β = 90.430 (3)°Prism, colourless
V = 1598.7 (3) Å30.27 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
4348 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.2°, θmin = 2.7°
ϕ and ω scansh = 88
11524 measured reflectionsk = 1624
5817 independent reflectionsl = 1417
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5817 reflectionsΔρmax = 0.17 e Å3
351 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 1791 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C16H22Cl2OV = 1598.7 (3) Å3
Mr = 301.24Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.6680 (7) ŵ = 0.40 mm1
b = 18.7760 (16) ÅT = 298 K
c = 12.7696 (12) Å0.27 × 0.18 × 0.12 mm
β = 90.430 (3)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
4348 reflections with I > 2σ(I)
11524 measured reflectionsRint = 0.031
5817 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.17 e Å3
5817 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 1791 Friedel pairs
351 parametersAbsolute structure parameter: 0.01 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.2648 (4)0.51700 (18)0.1518 (2)0.0665 (8)
H40.37130.53440.19160.080*
C50.3032 (4)0.50170 (17)0.0397 (2)0.0566 (7)
H5A0.36450.45510.03350.068*
H5B0.39670.53660.01250.068*
C60.1141 (4)0.50357 (13)0.02434 (19)0.0428 (5)
C70.1190 (4)0.50653 (15)0.1455 (2)0.0555 (7)
C130.3194 (5)0.5040 (2)0.2006 (3)0.0842 (11)
H13A0.30630.52510.26880.126*
H13B0.36150.45530.20770.126*
H13C0.41730.52980.16030.126*
C290.7542 (5)0.3406 (2)0.3751 (3)0.0802 (10)
H29A0.75320.38250.33200.120*
H29B0.79340.30030.33380.120*
H29C0.84780.34690.43180.120*
C300.1340 (6)0.1455 (2)0.4271 (3)0.1001 (13)
H30A0.06230.13530.49030.150*
H30B0.13760.10360.38410.150*
H30C0.06770.18320.38980.150*
C320.4841 (4)0.36421 (13)0.51889 (19)0.0483 (6)
Cl20.23340 (15)0.64403 (4)0.07935 (7)0.0867 (3)
Cl30.24108 (11)0.40022 (3)0.53257 (6)0.0636 (2)
Cl40.65593 (14)0.42095 (4)0.58207 (7)0.0779 (2)
C10.0602 (3)0.46308 (12)0.02462 (19)0.0401 (5)
H10.18150.47870.01260.048*
C20.0857 (4)0.48562 (13)0.1377 (2)0.0478 (6)
C30.0909 (4)0.50787 (16)0.1996 (2)0.0577 (7)
C80.0460 (5)0.46708 (15)0.2027 (2)0.0635 (8)
H8A0.04460.48060.27600.076*
H8B0.17440.48120.17420.076*
C90.0246 (6)0.38591 (16)0.1941 (2)0.0753 (9)
H9A0.15490.36450.20700.090*
H9B0.06440.36980.24900.090*
C100.0552 (5)0.35865 (15)0.0899 (2)0.0681 (8)
H10A0.19380.37380.08370.082*
H10B0.05600.30700.09330.082*
C110.0502 (4)0.37973 (13)0.0114 (2)0.0476 (6)
C120.0569 (6)0.52838 (19)0.3121 (2)0.0791 (10)
H12A0.18170.52630.34990.119*
H12B0.03710.49600.34300.119*
H12C0.00430.57590.31510.119*
C140.2671 (5)0.35177 (17)0.0103 (3)0.0793 (10)
H14A0.26600.30080.00450.119*
H14B0.33830.37180.04830.119*
H14C0.33220.36530.07410.119*
C150.0620 (5)0.34352 (16)0.1020 (3)0.0709 (9)
H15A0.05840.29280.09250.106*
H15B0.00080.35570.16700.106*
H15C0.19890.35940.10320.106*
C160.0640 (4)0.57190 (14)0.0831 (2)0.0545 (7)
C170.3373 (3)0.23635 (12)0.52663 (18)0.0416 (5)
H170.22290.26430.50090.050*
C180.2929 (4)0.21847 (13)0.6403 (2)0.0491 (6)
C190.4595 (4)0.21347 (15)0.7164 (2)0.0566 (7)
C200.6448 (4)0.23164 (15)0.6869 (2)0.0541 (7)
H200.74730.22790.73640.065*
C210.6985 (4)0.25743 (14)0.5803 (2)0.0504 (6)
H21A0.75960.21880.54150.060*
H21B0.79650.29540.58670.060*
C220.5185 (4)0.28455 (12)0.51998 (19)0.0394 (5)
C230.5449 (4)0.32811 (15)0.41890 (19)0.0503 (6)
C240.3892 (5)0.31700 (17)0.3332 (2)0.0620 (8)
H24A0.40550.35340.28010.074*
H24B0.25640.32230.36270.074*
C250.4058 (6)0.2439 (2)0.2822 (2)0.0831 (10)
H25A0.50180.24700.22560.100*
H25B0.27680.23200.25130.100*
C260.4694 (5)0.18318 (19)0.3547 (3)0.0788 (10)
H26A0.60730.19190.37570.095*
H26B0.46900.13980.31350.095*
C270.3494 (4)0.16840 (15)0.4547 (2)0.0612 (8)
C280.4103 (5)0.1891 (2)0.8254 (3)0.0821 (10)
H28A0.52940.19030.86810.123*
H28B0.35900.14140.82300.123*
H28C0.31120.22010.85490.123*
C310.4526 (6)0.10533 (17)0.5119 (3)0.0908 (11)
H31A0.58750.11840.53040.136*
H31B0.45480.06460.46650.136*
H31C0.37950.09400.57420.136*
O10.2520 (3)0.48319 (13)0.17818 (16)0.0732 (6)
O20.1224 (3)0.20740 (13)0.66801 (17)0.0771 (6)
Cl10.18216 (13)0.60662 (4)0.08502 (7)0.0734 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0487 (17)0.085 (2)0.065 (2)0.0084 (15)0.0153 (14)0.0067 (17)
C50.0387 (14)0.0655 (18)0.0656 (18)0.0037 (12)0.0004 (12)0.0059 (14)
C60.0402 (13)0.0434 (13)0.0447 (14)0.0043 (10)0.0006 (11)0.0034 (11)
C70.0677 (18)0.0501 (15)0.0489 (16)0.0119 (13)0.0092 (13)0.0005 (12)
C130.092 (3)0.089 (3)0.072 (2)0.019 (2)0.0332 (19)0.0136 (19)
C290.072 (2)0.100 (3)0.070 (2)0.0123 (19)0.0127 (17)0.0220 (19)
C300.077 (2)0.087 (3)0.137 (3)0.019 (2)0.014 (2)0.052 (3)
C320.0542 (15)0.0398 (13)0.0506 (16)0.0004 (11)0.0125 (12)0.0009 (11)
Cl20.1082 (7)0.0573 (5)0.0947 (6)0.0378 (5)0.0078 (5)0.0006 (4)
Cl30.0704 (5)0.0544 (4)0.0658 (4)0.0229 (3)0.0103 (3)0.0051 (3)
Cl40.0927 (6)0.0486 (4)0.0918 (6)0.0169 (4)0.0318 (4)0.0002 (4)
C10.0353 (13)0.0399 (13)0.0449 (14)0.0020 (10)0.0076 (10)0.0039 (11)
C20.0454 (15)0.0471 (14)0.0511 (16)0.0094 (11)0.0035 (12)0.0059 (12)
C30.0539 (18)0.0667 (18)0.0522 (16)0.0042 (14)0.0065 (13)0.0101 (14)
C80.089 (2)0.0588 (17)0.0430 (15)0.0148 (15)0.0073 (14)0.0008 (13)
C90.118 (3)0.0553 (18)0.0527 (17)0.0167 (18)0.0016 (17)0.0117 (14)
C100.091 (2)0.0446 (16)0.069 (2)0.0051 (15)0.0035 (16)0.0075 (14)
C110.0488 (15)0.0406 (13)0.0532 (15)0.0014 (11)0.0020 (12)0.0025 (11)
C120.105 (3)0.080 (2)0.0529 (18)0.003 (2)0.0018 (17)0.0074 (16)
C140.075 (2)0.0495 (17)0.114 (3)0.0145 (15)0.0048 (19)0.0074 (17)
C150.081 (2)0.0552 (17)0.076 (2)0.0137 (15)0.0104 (17)0.0120 (15)
C160.0626 (18)0.0459 (14)0.0549 (17)0.0149 (13)0.0024 (13)0.0026 (13)
C170.0348 (13)0.0408 (13)0.0490 (15)0.0067 (10)0.0050 (10)0.0034 (11)
C180.0430 (15)0.0421 (14)0.0624 (17)0.0073 (11)0.0050 (12)0.0054 (12)
C190.0551 (17)0.0587 (17)0.0559 (17)0.0108 (13)0.0002 (13)0.0135 (13)
C200.0510 (16)0.0544 (15)0.0566 (17)0.0087 (12)0.0141 (13)0.0066 (13)
C210.0460 (15)0.0466 (14)0.0584 (17)0.0029 (11)0.0054 (12)0.0061 (12)
C220.0378 (13)0.0395 (12)0.0410 (13)0.0040 (10)0.0019 (10)0.0007 (10)
C230.0494 (16)0.0582 (16)0.0433 (14)0.0008 (12)0.0001 (12)0.0077 (13)
C240.070 (2)0.0738 (19)0.0416 (15)0.0087 (15)0.0054 (13)0.0035 (15)
C250.102 (3)0.098 (3)0.0487 (18)0.011 (2)0.0075 (17)0.0172 (18)
C260.088 (2)0.073 (2)0.076 (2)0.0114 (18)0.0056 (18)0.0394 (18)
C270.0563 (17)0.0455 (15)0.082 (2)0.0012 (12)0.0020 (15)0.0182 (15)
C280.090 (2)0.090 (3)0.066 (2)0.015 (2)0.0108 (18)0.0236 (19)
C310.097 (3)0.0443 (17)0.131 (3)0.0114 (18)0.003 (2)0.010 (2)
O10.0502 (12)0.1049 (17)0.0647 (13)0.0081 (11)0.0127 (10)0.0001 (12)
O20.0439 (12)0.0959 (17)0.0917 (16)0.0044 (11)0.0137 (10)0.0280 (13)
Cl10.0823 (6)0.0530 (4)0.0846 (5)0.0118 (4)0.0146 (4)0.0132 (4)
Geometric parameters (Å, º) top
C4—C31.326 (4)C11—C151.532 (4)
C4—C51.484 (4)C11—C141.538 (4)
C4—H40.9300C12—H12A0.9600
C5—C61.498 (4)C12—H12B0.9600
C5—H5A0.9700C12—H12C0.9600
C5—H5B0.9700C14—H14A0.9600
C6—C161.522 (4)C14—H14B0.9600
C6—C11.527 (3)C14—H14C0.9600
C6—C71.549 (4)C15—H15A0.9600
C7—C161.510 (4)C15—H15B0.9600
C7—C81.510 (4)C15—H15C0.9600
C7—C131.516 (4)C16—Cl11.766 (3)
C13—H13A0.9600C17—C221.513 (3)
C13—H13B0.9600C17—C181.521 (4)
C13—H13C0.9600C17—C271.574 (3)
C29—C231.526 (4)C17—H170.9800
C29—H29A0.9600C18—O21.211 (3)
C29—H29B0.9600C18—C191.473 (4)
C29—H29C0.9600C19—C201.339 (4)
C30—C271.537 (4)C19—C281.505 (4)
C30—H30A0.9600C20—C211.491 (4)
C30—H30B0.9600C20—H200.9300
C30—H30C0.9600C21—C221.509 (3)
C32—C231.504 (4)C21—H21A0.9700
C32—C221.513 (3)C21—H21B0.9700
C32—Cl41.756 (3)C22—C231.539 (3)
C32—Cl31.766 (3)C23—C241.517 (4)
Cl2—C161.764 (3)C24—C251.523 (5)
C1—C21.515 (4)C24—H24A0.9700
C1—C111.576 (3)C24—H24B0.9700
C1—H10.9800C25—C261.527 (5)
C2—O11.228 (3)C25—H25A0.9700
C2—C31.474 (4)C25—H25B0.9700
C3—C121.506 (4)C26—C271.537 (5)
C8—C91.535 (4)C26—H26A0.9700
C8—H8A0.9700C26—H26B0.9700
C8—H8B0.9700C27—C311.549 (5)
C9—C101.519 (4)C28—H28A0.9600
C9—H9A0.9700C28—H28B0.9600
C9—H9B0.9700C28—H28C0.9600
C10—C111.529 (4)C31—H31A0.9600
C10—H10A0.9700C31—H31B0.9600
C10—H10B0.9700C31—H31C0.9600
C3—C4—C5125.3 (3)C11—C14—H14A109.5
C3—C4—H4117.4C11—C14—H14B109.5
C5—C4—H4117.4H14A—C14—H14B109.5
C4—C5—C6111.8 (2)C11—C14—H14C109.5
C4—C5—H5A109.3H14A—C14—H14C109.5
C6—C5—H5A109.3H14B—C14—H14C109.5
C4—C5—H5B109.3C11—C15—H15A109.5
C6—C5—H5B109.3C11—C15—H15B109.5
H5A—C5—H5B107.9H15A—C15—H15B109.5
C5—C6—C16118.0 (2)C11—C15—H15C109.5
C5—C6—C1113.9 (2)H15A—C15—H15C109.5
C16—C6—C1117.1 (2)H15B—C15—H15C109.5
C5—C6—C7121.5 (2)C7—C16—C661.42 (18)
C16—C6—C758.90 (17)C7—C16—Cl2118.7 (2)
C1—C6—C7116.6 (2)C6—C16—Cl2119.7 (2)
C16—C7—C8118.4 (3)C7—C16—Cl1121.5 (2)
C16—C7—C13119.3 (3)C6—C16—Cl1121.25 (19)
C8—C7—C13113.7 (3)Cl2—C16—Cl1108.17 (15)
C16—C7—C659.67 (17)C22—C17—C18110.30 (19)
C8—C7—C6116.4 (2)C22—C17—C27114.06 (19)
C13—C7—C6119.2 (3)C18—C17—C27112.9 (2)
C7—C13—H13A109.5C22—C17—H17106.3
C7—C13—H13B109.5C18—C17—H17106.3
H13A—C13—H13B109.5C27—C17—H17106.3
C7—C13—H13C109.5O2—C18—C19120.1 (2)
H13A—C13—H13C109.5O2—C18—C17120.4 (2)
H13B—C13—H13C109.5C19—C18—C17119.5 (2)
C23—C29—H29A109.5C20—C19—C18119.4 (2)
C23—C29—H29B109.5C20—C19—C28123.1 (3)
H29A—C29—H29B109.5C18—C19—C28117.5 (3)
C23—C29—H29C109.5C19—C20—C21124.6 (2)
H29A—C29—H29C109.5C19—C20—H20117.7
H29B—C29—H29C109.5C21—C20—H20117.7
C27—C30—H30A109.5C20—C21—C22112.3 (2)
C27—C30—H30B109.5C20—C21—H21A109.1
H30A—C30—H30B109.5C22—C21—H21A109.1
C27—C30—H30C109.5C20—C21—H21B109.1
H30A—C30—H30C109.5C22—C21—H21B109.1
H30B—C30—H30C109.5H21A—C21—H21B107.9
C23—C32—C2261.35 (17)C21—C22—C17113.7 (2)
C23—C32—Cl4118.95 (19)C21—C22—C32117.3 (2)
C22—C32—Cl4119.78 (18)C17—C22—C32118.1 (2)
C23—C32—Cl3120.68 (18)C21—C22—C23120.8 (2)
C22—C32—Cl3121.13 (18)C17—C22—C23117.5 (2)
Cl4—C32—Cl3108.56 (14)C32—C22—C2359.02 (17)
C2—C1—C6110.0 (2)C32—C23—C24119.1 (2)
C2—C1—C11112.6 (2)C32—C23—C29119.7 (3)
C6—C1—C11114.7 (2)C24—C23—C29112.3 (2)
C2—C1—H1106.3C32—C23—C2259.62 (15)
C6—C1—H1106.3C24—C23—C22116.7 (2)
C11—C1—H1106.3C29—C23—C22120.0 (2)
O1—C2—C3120.3 (2)C23—C24—C25112.4 (3)
O1—C2—C1119.9 (2)C23—C24—H24A109.1
C3—C2—C1119.7 (2)C25—C24—H24A109.1
C4—C3—C2119.2 (3)C23—C24—H24B109.1
C4—C3—C12123.0 (3)C25—C24—H24B109.1
C2—C3—C12117.3 (2)H24A—C24—H24B107.9
C7—C8—C9112.7 (3)C24—C25—C26115.7 (3)
C7—C8—H8A109.1C24—C25—H25A108.3
C9—C8—H8A109.1C26—C25—H25A108.3
C7—C8—H8B109.1C24—C25—H25B108.3
C9—C8—H8B109.1C26—C25—H25B108.3
H8A—C8—H8B107.8H25A—C25—H25B107.4
C10—C9—C8115.4 (2)C25—C26—C27119.7 (3)
C10—C9—H9A108.4C25—C26—H26A107.4
C8—C9—H9A108.4C27—C26—H26A107.4
C10—C9—H9B108.4C25—C26—H26B107.4
C8—C9—H9B108.4C27—C26—H26B107.4
H9A—C9—H9B107.5H26A—C26—H26B106.9
C9—C10—C11119.6 (3)C30—C27—C26110.6 (3)
C9—C10—H10A107.4C30—C27—C31107.7 (3)
C11—C10—H10A107.4C26—C27—C31107.3 (3)
C9—C10—H10B107.4C30—C27—C17108.0 (2)
C11—C10—H10B107.4C26—C27—C17111.6 (2)
H10A—C10—H10B106.9C31—C27—C17111.7 (3)
C10—C11—C15107.4 (2)C19—C28—H28A109.5
C10—C11—C14110.0 (2)C19—C28—H28B109.5
C15—C11—C14108.0 (2)H28A—C28—H28B109.5
C10—C11—C1111.6 (2)C19—C28—H28C109.5
C15—C11—C1112.4 (2)H28A—C28—H28C109.5
C14—C11—C1107.4 (2)H28B—C28—H28C109.5
C3—C12—H12A109.5C27—C31—H31A109.5
C3—C12—H12B109.5C27—C31—H31B109.5
H12A—C12—H12B109.5H31A—C31—H31B109.5
C3—C12—H12C109.5C27—C31—H31C109.5
H12A—C12—H12C109.5H31A—C31—H31C109.5
H12B—C12—H12C109.5H31B—C31—H31C109.5

Experimental details

Crystal data
Chemical formulaC16H22Cl2O
Mr301.24
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.6680 (7), 18.7760 (16), 12.7696 (12)
β (°) 90.430 (3)
V3)1598.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.27 × 0.18 × 0.12
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11524, 5817, 4348
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.00
No. of reflections5817
No. of parameters351
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17
Absolute structureFlack & Bernardinelli (2000), 1791 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick,2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank the National Center of Scientific and Technological Research (CNRST) for its support of our research.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS
First citationDakir, M., Auhmani, A., Ait Itto, M. Y., Mazoir, N., Akssira, M., Pierrot, M. & Benharref, A. (2004). Synth. Commun. 34, 2001–2008.  Web of Science CrossRef CAS
First citationDaoubi, M., Duran -Patron, R., Hmamouchi, M., Hernandez –Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals
First citationJoseph, T. C. & Dev, S. (1968). Tetrahedron, 24, 3841–3859.  CrossRef CAS Web of Science
First citationLassaba, E., Eljamili, H., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1998). Synth. Commun. 28, 2641–2651.  Web of Science CrossRef CAS
First citationPlattier, M. & Teiseire, P. (1974). Recherche, 19, 131–144.  CAS
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds