organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2,3,4-Trihy­dr­oxy­benzyl­­idene)­isonicotinohydrazide dihydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 20 October 2010; accepted 27 October 2010; online 31 October 2010)

In the title isoniazid derivative, C13H11N3O4·2H2O, the Schiff base mol­ecule exists in an E configuration with respect to the acyclic C=N bond. An intra­molecular O—H⋯N hydrogen bond forms a six-membered ring, producing an S(6) ring motif. The essentially planar pyridine ring [maximum deviation = 0.0119 (8) Å] is inclined at a dihedral angle of 7.30 (4)° with respect to the benzene ring. In the crystal, inter­molecular O—H⋯N, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into two-dimensional arrays lying parallel to the (10[\overline{1}]) plane. These arrays are further inter­connected into a three-dimensional extended network via O—H⋯O and C—H⋯O hydrogen bonds. A weak inter­molecular ππ inter­action [centroid-to-centroid distance = 3.5627 (5) Å] is also observed.

Related literature

For general background to and applications of the title isoniazid derivative, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]). For the preparation of the title compound, see: Lourenço et al. (2008[Lourenço, M. C. da S., Ferreira, M. de L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For closely related isoniazid structures, see: Naveenkumar et al. (2009[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540-o2541.], 2010a[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2010a). Acta Cryst. E66, o1202-o1203.],b[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o291.],c[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o579.]); Shi (2005[Shi, J. (2005). Acta Cryst. E61, o3933-o3934.]). For hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O4·2H2O

  • Mr = 309.28

  • Monoclinic, P 21 /c

  • a = 6.9504 (5) Å

  • b = 19.9077 (13) Å

  • c = 10.0930 (7) Å

  • β = 106.416 (2)°

  • V = 1339.60 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.35 × 0.18 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.989

  • 21520 measured reflections

  • 5656 independent reflections

  • 4668 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.03

  • 5656 reflections

  • 259 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N3 0.883 (18) 1.854 (18) 2.6561 (9) 150.1 (16)
O3—H1O3⋯N1i 0.869 (19) 1.835 (19) 2.6911 (10) 168.4 (18)
O4—H1O4⋯O1W 0.895 (18) 1.769 (18) 2.6559 (9) 170.5 (18)
N2—H1N2⋯O2Wii 0.890 (16) 2.132 (15) 2.9910 (9) 162.1 (14)
O1W—H1W1⋯O1iii 0.926 (18) 1.880 (18) 2.7834 (9) 164.6 (16)
O1W—H2W1⋯O2W 0.837 (19) 2.077 (18) 2.8980 (11) 167.0 (18)
O2W—H1W2⋯O2iv 0.831 (15) 2.161 (15) 2.9570 (11) 160.3 (14)
O2W—H2W2⋯O4v 0.86 (2) 1.91 (2) 2.7688 (9) 173.3 (19)
C4—H4A⋯O1vi 0.922 (14) 2.575 (14) 3.2930 (11) 135.1 (11)
C7—H7A⋯O2Wii 0.988 (14) 2.347 (14) 3.2176 (10) 146.7 (12)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z-1; (iv) x, y, z-1; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+3.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of our current work on synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound.

The title isoniazid derivative comprises of a (E)-N'-(2,3,4-trihydroxybenzylidene)isonicotinohydrazide molecule and two water molecules of crystallization (Fig. 1). The Schiff base molecule exists in an E configuration with respect to the acyclic C7N3 bond [C7N3 = 1.2921 (10) Å; torsion angle N2—N3—C7—C8 = 178.85 (7)°]. An intramolecular O2—H1O2···N3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motifs (Bernstein et al., 1995). The pyridine ring with atom sequence C1/C2/N1/C3/C4/C5 is essentially planar, with a maximum deviation of 0.0119 (8) Å at atom C5. There is a slight inclination between the pyridine and benzene rings, as indicated by the dihedral angle formed of 7.30 (4)°. All bond lengths and angles are consistent to those observed in closely related isoniazid structures (Naveenkumar et al., 2009, 2010a,b,c; Shi, 2005).

In the crystal packing, water molecules play an extensive part in forming the hydrogen-bonded structure. Neighbouring molecules are linked into two-dimensional arrays parallel to the (101) plane (Fig. 2) by intermolecular O3—H1O3···N1, O4—H1O4···O1W, N2—H1N2···O2W, O1W—H1W1···O1, O2W—H2W2···O4 and C7—H7A···O2W hydrogen bonds (Table 1). These arrays are further interconnected by intermolecular O1W—H2W1···O2W, O2W—H1W2···O2 and C4—H4A···O1 hydrogen bonds (Table 1) into a three-dimensional extended structure (Fig. 3). Weak intermolecular ππ aromatic stacking interactions involving the pyridine and benzene rings [Cg1···Cg2 = 3.5627 (5) Å, symmetry code: -x + 2, -y + 1, -z + 2] stabilizing the crystal structure.

Related literature top

For general background to and applications of the title isoniazid derivative, see: Janin (2007); Kahwa et al. (1986); Maccari et al. (2005); Slayden & Barry (2000). For the preparation of the title compound, see: Lourenço et al. (2008). For closely related isoniazid structures, see: Naveenkumar et al. (2009, 2010a,b,c); Shi (2005). For hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The isoniazid derivative was prepared following the procedure by Lourenço et al., 2008. The title compound was prepared by the reaction between 2,3,4-trihydroxybenzaldehyde (1.0 eq) with isoniazid (1.0 eq) in ethanol/water. After stirring for 1–3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and ethyl ether, afforded the pure derivative. The brown-coloured single crystals suitable for X-ray analysis were obtained by recrystallization with ethanol.

Refinement top

All H atoms were located from difference Fourier map and allowed to refine freely with N—H = 0.890 (16), O—H = 0.834 (16)–0.926 (18) and C—H = 0.921 (14)–0.988 (13) Å.

Structure description top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). Schiff bases have attracted much attention because of their biological activity (Kahwa et al., 1986). As a part of our current work on synthesis of (E)-N'-substituted isonicotinohydrazide derivatives, in this paper we present the crystal structure of the title compound.

The title isoniazid derivative comprises of a (E)-N'-(2,3,4-trihydroxybenzylidene)isonicotinohydrazide molecule and two water molecules of crystallization (Fig. 1). The Schiff base molecule exists in an E configuration with respect to the acyclic C7N3 bond [C7N3 = 1.2921 (10) Å; torsion angle N2—N3—C7—C8 = 178.85 (7)°]. An intramolecular O2—H1O2···N3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) ring motifs (Bernstein et al., 1995). The pyridine ring with atom sequence C1/C2/N1/C3/C4/C5 is essentially planar, with a maximum deviation of 0.0119 (8) Å at atom C5. There is a slight inclination between the pyridine and benzene rings, as indicated by the dihedral angle formed of 7.30 (4)°. All bond lengths and angles are consistent to those observed in closely related isoniazid structures (Naveenkumar et al., 2009, 2010a,b,c; Shi, 2005).

In the crystal packing, water molecules play an extensive part in forming the hydrogen-bonded structure. Neighbouring molecules are linked into two-dimensional arrays parallel to the (101) plane (Fig. 2) by intermolecular O3—H1O3···N1, O4—H1O4···O1W, N2—H1N2···O2W, O1W—H1W1···O1, O2W—H2W2···O4 and C7—H7A···O2W hydrogen bonds (Table 1). These arrays are further interconnected by intermolecular O1W—H2W1···O2W, O2W—H1W2···O2 and C4—H4A···O1 hydrogen bonds (Table 1) into a three-dimensional extended structure (Fig. 3). Weak intermolecular ππ aromatic stacking interactions involving the pyridine and benzene rings [Cg1···Cg2 = 3.5627 (5) Å, symmetry code: -x + 2, -y + 1, -z + 2] stabilizing the crystal structure.

For general background to and applications of the title isoniazid derivative, see: Janin (2007); Kahwa et al. (1986); Maccari et al. (2005); Slayden & Barry (2000). For the preparation of the title compound, see: Lourenço et al. (2008). For closely related isoniazid structures, see: Naveenkumar et al. (2009, 2010a,b,c); Shi (2005). For hydrogen-bond ring motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title isoniazid derivative, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Part of the crystal structure, viewed along the [101] direction, showing a hydrogen-bonded 2D array. Intermolecular hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The crystal structure of the title derivative, viewed along the b axis, showing the 2D arrays being linked into a 3D extended network. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-N'-(2,3,4-Trihydroxybenzylidene)isonicotinohydrazide dihydrate top
Crystal data top
C13H11N3O4·2H2OF(000) = 648
Mr = 309.28Dx = 1.534 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7532 reflections
a = 6.9504 (5) Åθ = 2.9–34.5°
b = 19.9077 (13) ŵ = 0.12 mm1
c = 10.0930 (7) ÅT = 100 K
β = 106.416 (2)°Plate, brown
V = 1339.60 (16) Å30.35 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5656 independent reflections
Radiation source: fine-focus sealed tube4668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 34.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.959, Tmax = 0.989k = 3131
21520 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.2238P]
where P = (Fo2 + 2Fc2)/3
5656 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H11N3O4·2H2OV = 1339.60 (16) Å3
Mr = 309.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9504 (5) ŵ = 0.12 mm1
b = 19.9077 (13) ÅT = 100 K
c = 10.0930 (7) Å0.35 × 0.18 × 0.09 mm
β = 106.416 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5656 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4668 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.989Rint = 0.031
21520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113All H-atom parameters refined
S = 1.03Δρmax = 0.50 e Å3
5656 reflectionsΔρmin = 0.26 e Å3
259 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.01608 (10)0.51301 (3)1.29712 (6)0.01639 (12)
O20.67646 (10)0.62875 (3)0.99244 (6)0.01723 (13)
O30.48628 (10)0.72385 (3)0.80029 (6)0.01782 (13)
O40.29346 (10)0.68845 (3)0.54245 (6)0.01504 (12)
N11.23127 (11)0.28684 (4)1.50037 (7)0.01687 (14)
N20.86827 (10)0.44582 (3)1.11516 (6)0.01251 (12)
N30.78423 (10)0.50085 (3)1.03671 (7)0.01281 (12)
C11.05976 (13)0.33042 (4)1.27584 (8)0.01494 (14)
C21.14706 (13)0.27828 (4)1.36485 (8)0.01646 (15)
C31.22531 (14)0.34874 (4)1.55190 (8)0.01760 (15)
C41.14150 (13)0.40355 (4)1.47177 (8)0.01499 (14)
C51.05899 (11)0.39475 (4)1.32999 (7)0.01165 (13)
C60.97938 (12)0.45639 (4)1.24693 (7)0.01180 (13)
C70.68132 (12)0.48824 (4)0.91109 (8)0.01247 (13)
C80.58229 (11)0.54102 (3)0.81860 (7)0.01120 (13)
C90.58328 (11)0.60855 (4)0.85957 (7)0.01149 (13)
C100.48749 (12)0.65802 (4)0.76616 (7)0.01176 (13)
C110.38589 (11)0.63908 (4)0.63033 (7)0.01128 (13)
C120.38052 (12)0.57192 (4)0.58943 (7)0.01307 (13)
C130.47908 (12)0.52365 (4)0.68254 (7)0.01302 (13)
O1W0.13931 (13)0.64535 (3)0.28519 (7)0.02289 (15)
O2W0.30816 (11)0.67273 (3)0.05904 (7)0.01959 (13)
H1O20.732 (3)0.5922 (9)1.0365 (17)0.041 (4)*
H1O30.582 (3)0.7387 (9)0.8694 (18)0.045 (5)*
H1O40.247 (3)0.6695 (9)0.4591 (19)0.045 (5)*
H1N20.836 (2)0.4055 (8)1.0773 (15)0.034 (4)*
H1A1.001 (2)0.3205 (7)1.1767 (14)0.023 (3)*
H2A1.146 (2)0.2338 (7)1.3281 (14)0.023 (3)*
H3A1.282 (2)0.3542 (6)1.6527 (14)0.021 (3)*
H4A1.135 (2)0.4445 (7)1.5129 (14)0.028 (3)*
H7A0.665 (2)0.4412 (7)0.8788 (15)0.029 (3)*
H12A0.306 (2)0.5605 (7)0.4985 (13)0.020 (3)*
H13A0.479 (2)0.4751 (7)0.6573 (14)0.021 (3)*
H1W10.102 (3)0.6006 (9)0.2736 (17)0.043 (4)*
H2W10.206 (3)0.6521 (8)0.2292 (17)0.038 (4)*
H1W20.425 (2)0.6675 (7)0.0549 (15)0.030 (4)*
H2W20.309 (3)0.7161 (10)0.0608 (19)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0222 (3)0.0097 (2)0.0151 (2)0.0004 (2)0.0018 (2)0.00091 (18)
O20.0237 (3)0.0122 (2)0.0108 (2)0.0021 (2)0.0033 (2)0.00140 (18)
O30.0247 (3)0.0080 (2)0.0154 (2)0.0006 (2)0.0029 (2)0.00218 (18)
O40.0206 (3)0.0099 (2)0.0112 (2)0.00154 (19)0.0010 (2)0.00164 (17)
N10.0185 (3)0.0132 (3)0.0162 (3)0.0008 (2)0.0005 (2)0.0031 (2)
N20.0154 (3)0.0084 (2)0.0115 (2)0.0012 (2)0.0002 (2)0.00147 (19)
N30.0139 (3)0.0104 (2)0.0126 (3)0.0018 (2)0.0014 (2)0.00298 (19)
C10.0188 (4)0.0110 (3)0.0133 (3)0.0015 (2)0.0017 (3)0.0002 (2)
C20.0195 (4)0.0109 (3)0.0169 (3)0.0021 (3)0.0018 (3)0.0012 (2)
C30.0218 (4)0.0148 (3)0.0129 (3)0.0008 (3)0.0006 (3)0.0023 (2)
C40.0179 (4)0.0121 (3)0.0125 (3)0.0008 (2)0.0003 (2)0.0006 (2)
C50.0121 (3)0.0097 (3)0.0121 (3)0.0005 (2)0.0017 (2)0.0012 (2)
C60.0127 (3)0.0103 (3)0.0115 (3)0.0006 (2)0.0021 (2)0.0009 (2)
C70.0146 (3)0.0095 (3)0.0126 (3)0.0010 (2)0.0026 (2)0.0011 (2)
C80.0128 (3)0.0088 (3)0.0110 (3)0.0007 (2)0.0018 (2)0.0008 (2)
C90.0129 (3)0.0097 (3)0.0101 (3)0.0001 (2)0.0004 (2)0.0001 (2)
C100.0137 (3)0.0084 (3)0.0116 (3)0.0001 (2)0.0010 (2)0.0001 (2)
C110.0129 (3)0.0093 (3)0.0106 (3)0.0002 (2)0.0015 (2)0.0010 (2)
C120.0163 (3)0.0102 (3)0.0110 (3)0.0005 (2)0.0011 (2)0.0003 (2)
C130.0165 (3)0.0093 (3)0.0117 (3)0.0006 (2)0.0015 (2)0.0004 (2)
O1W0.0385 (4)0.0160 (3)0.0140 (3)0.0034 (3)0.0071 (3)0.0002 (2)
O2W0.0281 (4)0.0104 (2)0.0201 (3)0.0019 (2)0.0065 (2)0.0011 (2)
Geometric parameters (Å, º) top
O1—C61.2326 (9)C3—H3A0.988 (13)
O2—C91.3743 (9)C4—C51.3941 (10)
O2—H1O20.883 (18)C4—H4A0.921 (14)
O3—C101.3557 (9)C5—C61.5009 (10)
O3—H1O30.868 (18)C7—C81.4442 (10)
O4—C111.3577 (9)C7—H7A0.987 (15)
O4—H1O40.895 (18)C8—C131.4011 (10)
N1—C21.3380 (10)C8—C91.4060 (10)
N1—C31.3428 (11)C9—C101.3954 (10)
N2—C61.3524 (9)C10—C111.4047 (10)
N2—N31.3809 (9)C11—C121.3965 (10)
N2—H1N20.890 (16)C12—C131.3827 (10)
N3—C71.2921 (10)C12—H12A0.946 (13)
C1—C51.3929 (10)C13—H13A1.000 (13)
C1—C21.3945 (11)O1W—H1W10.926 (18)
C1—H1A0.988 (13)O1W—H2W10.838 (18)
C2—H2A0.960 (14)O2W—H1W20.834 (16)
C3—C41.3847 (11)O2W—H2W20.863 (19)
C9—O2—H1O2105.5 (11)N2—C6—C5116.10 (6)
C10—O3—H1O3118.3 (12)N3—C7—C8121.57 (7)
C11—O4—H1O4106.7 (12)N3—C7—H7A119.2 (8)
C2—N1—C3117.41 (7)C8—C7—H7A119.2 (8)
C6—N2—N3118.17 (6)C13—C8—C9118.86 (6)
C6—N2—H1N2124.5 (10)C13—C8—C7118.20 (6)
N3—N2—H1N2117.1 (10)C9—C8—C7122.94 (6)
C7—N3—N2115.84 (6)O2—C9—C10117.13 (6)
C5—C1—C2118.73 (7)O2—C9—C8121.91 (6)
C5—C1—H1A122.3 (8)C10—C9—C8120.96 (6)
C2—C1—H1A118.9 (8)O3—C10—C9123.14 (6)
N1—C2—C1123.29 (7)O3—C10—C11118.03 (6)
N1—C2—H2A117.8 (8)C9—C10—C11118.83 (6)
C1—C2—H2A118.9 (8)O4—C11—C12122.13 (6)
N1—C3—C4123.43 (7)O4—C11—C10117.24 (6)
N1—C3—H3A117.0 (8)C12—C11—C10120.63 (6)
C4—C3—H3A119.6 (8)C13—C12—C11119.85 (7)
C3—C4—C5118.92 (7)C13—C12—H12A121.6 (8)
C3—C4—H4A119.9 (9)C11—C12—H12A118.6 (8)
C5—C4—H4A121.1 (9)C12—C13—C8120.85 (7)
C1—C5—C4118.18 (7)C12—C13—H13A122.3 (8)
C1—C5—C6125.05 (7)C8—C13—H13A116.8 (8)
C4—C5—C6116.76 (6)H1W1—O1W—H2W1105.0 (15)
O1—C6—N2122.73 (7)H1W2—O2W—H2W297.2 (15)
O1—C6—C5121.16 (7)
C6—N2—N3—C7179.26 (7)C13—C8—C9—O2178.05 (7)
C3—N1—C2—C11.77 (14)C7—C8—C9—O21.23 (12)
C5—C1—C2—N10.22 (14)C13—C8—C9—C101.49 (12)
C2—N1—C3—C41.57 (14)C7—C8—C9—C10179.23 (7)
N1—C3—C4—C50.19 (14)O2—C9—C10—O31.24 (12)
C2—C1—C5—C41.57 (12)C8—C9—C10—O3179.21 (8)
C2—C1—C5—C6177.13 (8)O2—C9—C10—C11178.29 (7)
C3—C4—C5—C11.76 (12)C8—C9—C10—C111.26 (12)
C3—C4—C5—C6177.05 (8)O3—C10—C11—O40.08 (11)
N3—N2—C6—O13.53 (12)C9—C10—C11—O4179.64 (7)
N3—N2—C6—C5177.10 (7)O3—C10—C11—C12179.47 (8)
C1—C5—C6—O1166.63 (8)C9—C10—C11—C120.09 (12)
C4—C5—C6—O112.09 (12)O4—C11—C12—C13179.27 (7)
C1—C5—C6—N212.74 (12)C10—C11—C12—C131.20 (12)
C4—C5—C6—N2168.54 (7)C11—C12—C13—C80.97 (12)
N2—N3—C7—C8178.85 (7)C9—C8—C13—C120.35 (12)
N3—C7—C8—C13177.91 (8)C7—C8—C13—C12179.67 (7)
N3—C7—C8—C92.81 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N30.883 (18)1.854 (18)2.6561 (9)150.1 (16)
O3—H1O3···N1i0.869 (19)1.835 (19)2.6911 (10)168.4 (18)
O4—H1O4···O1W0.895 (18)1.769 (18)2.6559 (9)170.5 (18)
N2—H1N2···O2Wii0.890 (16)2.132 (15)2.9910 (9)162.1 (14)
O1W—H1W1···O1iii0.926 (18)1.880 (18)2.7834 (9)164.6 (16)
O1W—H2W1···O2W0.837 (19)2.077 (18)2.8980 (11)167.0 (18)
O2W—H1W2···O2iv0.831 (15)2.161 (15)2.9570 (11)160.3 (14)
O2W—H2W2···O4v0.86 (2)1.91 (2)2.7688 (9)173.3 (19)
C4—H4A···O1vi0.922 (14)2.575 (14)3.2930 (11)135.1 (11)
C7—H7A···O2Wii0.988 (14)2.347 (14)3.2176 (10)146.7 (12)
Symmetry codes: (i) x+2, y+1/2, z+5/2; (ii) x+1, y+1, z+1; (iii) x1, y, z1; (iv) x, y, z1; (v) x, y+3/2, z1/2; (vi) x+2, y+1, z+3.

Experimental details

Crystal data
Chemical formulaC13H11N3O4·2H2O
Mr309.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.9504 (5), 19.9077 (13), 10.0930 (7)
β (°) 106.416 (2)
V3)1339.60 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.18 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.959, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
21520, 5656, 4668
Rint0.031
(sin θ/λ)max1)0.798
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.03
No. of reflections5656
No. of parameters259
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N30.883 (18)1.854 (18)2.6561 (9)150.1 (16)
O3—H1O3···N1i0.869 (19)1.835 (19)2.6911 (10)168.4 (18)
O4—H1O4···O1W0.895 (18)1.769 (18)2.6559 (9)170.5 (18)
N2—H1N2···O2Wii0.890 (16)2.132 (15)2.9910 (9)162.1 (14)
O1W—H1W1···O1iii0.926 (18)1.880 (18)2.7834 (9)164.6 (16)
O1W—H2W1···O2W0.837 (19)2.077 (18)2.8980 (11)167.0 (18)
O2W—H1W2···O2iv0.831 (15)2.161 (15)2.9570 (11)160.3 (14)
O2W—H2W2···O4v0.86 (2)1.91 (2)2.7688 (9)173.3 (19)
C4—H4A···O1vi0.922 (14)2.575 (14)3.2930 (11)135.1 (11)
C7—H7A···O2Wii0.988 (14)2.347 (14)3.2176 (10)146.7 (12)
Symmetry codes: (i) x+2, y+1/2, z+5/2; (ii) x+1, y+1, z+1; (iii) x1, y, z1; (iv) x, y, z1; (v) x, y+3/2, z1/2; (vi) x+2, y+1, z+3.
 

Footnotes

Additional correspondence author, e-mail: amirin@usm.my.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under a University Research Grant (No. 1001/PFARMASI/815005). JHG and HKF thank USM for a Research University Grant (No. 1001/PFIZIK/811160). HSNK is grateful to USM for a USM Fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationLourenço, M. C. da S., Ferreira, M. de L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science PubMed Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2010a). Acta Cryst. E66, o1202–o1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010c). Acta Cryst. E66, o579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. (2005). Acta Cryst. E61, o3933–o3934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds