organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9-Di­chloro-2,4,8,10-tetra­oxa-3,9-di­phospha­spiro­[5.5]undecane-3,9-dione

aHeilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retardant Materials, College of Science, Northeast Forestry University, Harbin 150040, People's Republic of China
*Correspondence e-mail: sundeyee@yahoo.com.cn

(Received 21 October 2010; accepted 24 October 2010; online 31 October 2010)

In the title compound, C5H8Cl2O6P2, the two six-membered rings display chair conformations. The P=O bond distances are 1.444 (2) and 1.446 (2) Å. Weak inter­molecular C—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For applications of penta­erythritol diphospho­nate compounds, see: Granzow (1981[Granzow, A. H. (1981). US Patent 4 257 931.]); Tanabe et al. (2005[Tanabe, S., Yanagida, T., Imamura, K., Tando, K. & Taketani, Y. (2005). EP Patent 1 586 576.]). For details of the preparation of the title compound, see: Li et al. (2002[Li, B., Sun, C.-Y. & Zhang, X.-C. (2002). CN Patent 1 414 000A.]). For related compounds, see: Heinemann et al. (1994[Heinemann, F. W., Hartung, H., Kugler, S. & Kircheiss, A. (1994). Z. Kristallogr. 209, 558-559.]); Zhang et al. (2006[Zhang, Y.-H., Wang, X.-H., Liu, S. & Yao, C. (2006). Acta Cryst. E62, o2620-o2621.]). For bond-length, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Elnagar et al. (2000[Elnagar, H. Y., Ranken, P. F. & Fronczek, F. R. (2000). Acta Cryst. C56, 905-906.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8Cl2O6P2

  • Mr = 296.95

  • Orthorhombic, P 21 21 21

  • a = 6.0630 (5) Å

  • b = 12.7384 (10) Å

  • c = 13.4338 (10) Å

  • V = 1037.53 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 185 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD 1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.929

  • 5317 measured reflections

  • 1849 independent reflections

  • 1662 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.069

  • S = 1.00

  • 1849 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 747 Friedel pairs

  • Flack parameter: 0.18 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O5i 0.99 2.34 3.214 (4) 147
C1—H1B⋯O6ii 0.99 2.31 3.252 (4) 159
C4—H4B⋯O5i 0.99 2.36 3.260 (4) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Studies of pentaerythritol diphosphonate compounds have been significant interested. On one hand, the compounds have been reported to act as one of the most important reaction intermediates of fire retardant agents (Tanabe et al., 2005). On the other hand, it seems to be a good candidate in modifying the stability of polymers (Granzow, 1981). The findings have triggered the development of new flame retardant materials. As an extension of the work on the structural characterization of pentaerythritol diphosphonate compounds, the preparation and crystal structure of the title compound, (I), is proposed here.

The asymmetric unit of (I) contain a spiro[5.5]undecane molecule (Fig. 1). Several compounds with similar structures have been reported previously (Heinemann et al., 1994; Zhang et al., 2006). The bond lengths and angles are within normal ranges (Allen et al., 1987; Elnagar et al., 2000). The six-membered rings of (I) have the chair conformation consistent with the steric difference in this conformation between opposite ends of the molecule. In addition, the C1—C3—C2 and C4—C3—C5 angles are in the range of 109.4 (3)–109.2 (3)°,the P—Cl bond lengths are 2.0050 (14) and 2.0047 (13) Å, respectively. In the crystal structure of (I), The non-classic C—H···O hydrogen bonds ranging from 3.099 (4) to 3.260 (4) Å contributed to the stability of the crystal packing.

Related literature top

For applications of pentaerythritol diphosphonate compounds, see: Granzow (1981); Tanabe et al. (2005). For details of the preparation of the compounds, see: Li et al. (2002). For related compounds, see: Heinemann et al. (1994); Zhang et al. (2006). For bond-length and angle data [or just bond-length?], see: Allen et al. (1987); Elnagar et al. (2000).

Experimental top

The title compound was prepared by reaction of pentaerythritol with phosphorus oxychloride in acetonitrile according to the reported procedures (Li et al., 2002). Crystals were produced at the bottom of the vessel on slow evaporation of acetic acid solution.

Refinement top

All H atoms were placed geometrically with C—H = 0.99 Å and refined using a riding atom model with Uiso(H) = 1.2Ueq(C).

Structure description top

Studies of pentaerythritol diphosphonate compounds have been significant interested. On one hand, the compounds have been reported to act as one of the most important reaction intermediates of fire retardant agents (Tanabe et al., 2005). On the other hand, it seems to be a good candidate in modifying the stability of polymers (Granzow, 1981). The findings have triggered the development of new flame retardant materials. As an extension of the work on the structural characterization of pentaerythritol diphosphonate compounds, the preparation and crystal structure of the title compound, (I), is proposed here.

The asymmetric unit of (I) contain a spiro[5.5]undecane molecule (Fig. 1). Several compounds with similar structures have been reported previously (Heinemann et al., 1994; Zhang et al., 2006). The bond lengths and angles are within normal ranges (Allen et al., 1987; Elnagar et al., 2000). The six-membered rings of (I) have the chair conformation consistent with the steric difference in this conformation between opposite ends of the molecule. In addition, the C1—C3—C2 and C4—C3—C5 angles are in the range of 109.4 (3)–109.2 (3)°,the P—Cl bond lengths are 2.0050 (14) and 2.0047 (13) Å, respectively. In the crystal structure of (I), The non-classic C—H···O hydrogen bonds ranging from 3.099 (4) to 3.260 (4) Å contributed to the stability of the crystal packing.

For applications of pentaerythritol diphosphonate compounds, see: Granzow (1981); Tanabe et al. (2005). For details of the preparation of the compounds, see: Li et al. (2002). For related compounds, see: Heinemann et al. (1994); Zhang et al. (2006). For bond-length and angle data [or just bond-length?], see: Allen et al. (1987); Elnagar et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing through C—H···O interactions along the c axis
3,9-Dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane-3,9-dione top
Crystal data top
C5H8Cl2O6P2F(000) = 600
Mr = 296.95Dx = 1.901 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2823 reflections
a = 6.0630 (5) Åθ = 2.2–25.0°
b = 12.7384 (10) ŵ = 0.94 mm1
c = 13.4338 (10) ÅT = 185 K
V = 1037.53 (14) Å3Block, colorless
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD 1000 area-detector
diffractometer
1849 independent reflections
Radiation source: fine-focus sealed tube1662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 57
Tmin = 0.896, Tmax = 0.929k = 1415
5317 measured reflectionsl = 1416
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.5846P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1849 reflectionsΔρmax = 0.27 e Å3
136 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 747 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.18 (10)
Crystal data top
C5H8Cl2O6P2V = 1037.53 (14) Å3
Mr = 296.95Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0630 (5) ŵ = 0.94 mm1
b = 12.7384 (10) ÅT = 185 K
c = 13.4338 (10) Å0.12 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD 1000 area-detector
diffractometer
1849 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1662 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.929Rint = 0.036
5317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.27 e Å3
S = 1.00Δρmin = 0.23 e Å3
1849 reflectionsAbsolute structure: Flack (1983), 747 Friedel pairs
136 parametersAbsolute structure parameter: 0.18 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P20.86704 (16)0.68037 (6)0.19061 (7)0.0195 (2)
P10.61011 (17)0.94037 (7)0.51917 (6)0.0225 (2)
Cl21.00827 (16)0.75305 (7)0.07460 (7)0.0322 (2)
Cl10.28767 (15)0.96781 (7)0.53971 (7)0.0299 (2)
O40.9665 (4)0.73565 (16)0.28413 (16)0.0197 (5)
O20.6224 (4)0.82146 (16)0.48872 (15)0.0218 (5)
O60.8993 (4)0.56810 (17)0.18897 (18)0.0274 (6)
O30.6190 (4)0.71416 (16)0.18620 (16)0.0206 (5)
O10.6715 (4)1.00446 (16)0.42462 (16)0.0227 (6)
O50.7431 (5)0.96565 (19)0.60521 (16)0.0338 (6)
C30.6534 (6)0.8561 (2)0.3088 (2)0.0170 (7)
C50.9032 (6)0.8438 (2)0.3065 (3)0.0208 (8)
H5A0.96560.89120.25530.025*
H5B0.96520.86440.37180.025*
C40.5581 (6)0.8229 (2)0.2084 (2)0.0198 (8)
H4A0.39550.82950.20980.024*
H4B0.61520.86970.15550.024*
C10.5966 (6)0.9720 (2)0.3254 (2)0.0211 (7)
H1A0.66941.01550.27400.025*
H1B0.43530.98220.31980.025*
C20.5455 (6)0.7897 (3)0.3905 (2)0.0207 (8)
H2A0.38330.79780.38700.025*
H2B0.58100.71470.37960.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P20.0192 (5)0.0181 (4)0.0211 (5)0.0002 (4)0.0003 (4)0.0033 (4)
P10.0263 (5)0.0223 (5)0.0189 (5)0.0018 (4)0.0020 (4)0.0028 (4)
Cl20.0331 (5)0.0376 (5)0.0259 (5)0.0039 (5)0.0073 (4)0.0002 (4)
Cl10.0282 (5)0.0299 (5)0.0317 (5)0.0023 (4)0.0074 (4)0.0002 (4)
O40.0187 (13)0.0183 (12)0.0221 (12)0.0044 (11)0.0028 (10)0.0046 (10)
O20.0295 (13)0.0182 (11)0.0178 (12)0.0025 (11)0.0017 (11)0.0003 (9)
O60.0283 (14)0.0192 (12)0.0346 (14)0.0004 (11)0.0046 (13)0.0042 (11)
O30.0205 (12)0.0169 (11)0.0245 (12)0.0013 (10)0.0035 (12)0.0037 (10)
O10.0307 (15)0.0169 (11)0.0206 (12)0.0025 (11)0.0042 (11)0.0037 (10)
O50.0393 (16)0.0398 (15)0.0223 (12)0.0063 (14)0.0051 (13)0.0065 (11)
C30.0198 (18)0.0146 (15)0.0166 (16)0.0006 (13)0.0007 (15)0.0015 (13)
C50.0248 (19)0.0164 (16)0.0212 (18)0.0009 (15)0.0002 (17)0.0046 (14)
C40.0219 (19)0.0151 (16)0.0223 (19)0.0042 (15)0.0024 (15)0.0015 (14)
C10.028 (2)0.0183 (17)0.0167 (17)0.0027 (16)0.0007 (16)0.0000 (14)
C20.024 (2)0.0189 (18)0.0196 (18)0.0002 (15)0.0002 (15)0.0014 (14)
Geometric parameters (Å, º) top
P2—O61.444 (2)C3—C51.523 (5)
P2—O41.561 (2)C3—C41.528 (4)
P2—O31.565 (2)C3—C21.532 (4)
P2—Cl22.0047 (13)C3—C11.533 (4)
P1—O51.446 (2)C5—H5A0.9900
P1—O11.555 (2)C5—H5B0.9900
P1—O21.571 (2)C4—H4A0.9900
P1—Cl12.0050 (14)C4—H4B0.9900
O4—C51.461 (3)C1—H1A0.9900
O2—C21.457 (4)C1—H1B0.9900
O3—C41.464 (4)C2—H2A0.9900
O1—C11.467 (4)C2—H2B0.9900
O6—P2—O4114.00 (13)O4—C5—H5A109.4
O6—P2—O3113.70 (14)C3—C5—H5A109.4
O4—P2—O3106.12 (13)O4—C5—H5B109.4
O6—P2—Cl2112.82 (11)C3—C5—H5B109.4
O4—P2—Cl2104.61 (10)H5A—C5—H5B108.0
O3—P2—Cl2104.71 (10)O3—C4—C3110.2 (3)
O5—P1—O1113.75 (14)O3—C4—H4A109.6
O5—P1—O2113.36 (14)C3—C4—H4A109.6
O1—P1—O2106.39 (12)O3—C4—H4B109.6
O5—P1—Cl1113.26 (12)C3—C4—H4B109.6
O1—P1—Cl1104.73 (10)H4A—C4—H4B108.1
O2—P1—Cl1104.49 (11)O1—C1—C3109.5 (2)
C5—O4—P2119.3 (2)O1—C1—H1A109.8
C2—O2—P1119.24 (19)C3—C1—H1A109.8
C4—O3—P2119.6 (2)O1—C1—H1B109.8
C1—O1—P1121.3 (2)C3—C1—H1B109.8
C5—C3—C4109.2 (3)H1A—C1—H1B108.2
C5—C3—C2112.5 (3)O2—C2—C3111.0 (3)
C4—C3—C2108.6 (3)O2—C2—H2A109.4
C5—C3—C1109.0 (3)C3—C2—H2A109.4
C4—C3—C1108.0 (3)O2—C2—H2B109.4
C2—C3—C1109.4 (3)C3—C2—H2B109.4
O4—C5—C3111.2 (3)H2A—C2—H2B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O5i0.992.343.214 (4)147
C1—H1B···O6ii0.992.313.252 (4)159
C4—H4B···O5i0.992.363.260 (4)150
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H8Cl2O6P2
Mr296.95
Crystal system, space groupOrthorhombic, P212121
Temperature (K)185
a, b, c (Å)6.0630 (5), 12.7384 (10), 13.4338 (10)
V3)1037.53 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD 1000 area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.896, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
5317, 1849, 1662
Rint0.036
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.069, 1.00
No. of reflections1849
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23
Absolute structureFlack (1983), 747 Friedel pairs
Absolute structure parameter0.18 (10)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O5i0.992.343.214 (4)146.6
C1—H1B···O6ii0.992.313.252 (4)159.3
C4—H4B···O5i0.992.363.260 (4)150.0
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank Northeast Forestry University for financial support (graduate innovation funded projects GRAM09).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElnagar, H. Y., Ranken, P. F. & Fronczek, F. R. (2000). Acta Cryst. C56, 905–906.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGranzow, A. H. (1981). US Patent 4 257 931.  Google Scholar
First citationHeinemann, F. W., Hartung, H., Kugler, S. & Kircheiss, A. (1994). Z. Kristallogr. 209, 558–559.  CrossRef CAS Web of Science Google Scholar
First citationLi, B., Sun, C.-Y. & Zhang, X.-C. (2002). CN Patent 1 414 000A.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanabe, S., Yanagida, T., Imamura, K., Tando, K. & Taketani, Y. (2005). EP Patent 1 586 576.  Google Scholar
First citationZhang, Y.-H., Wang, X.-H., Liu, S. & Yao, C. (2006). Acta Cryst. E62, o2620–o2621.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds