organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-2,2′-Bis(di­phenyl­phosphan­yl)-1,1′-binaphth­yl: a racemic diphosphine ligand

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: wxchai_cm@yahoo.com.cn

(Received 3 June 2012; accepted 5 June 2012; online 13 June 2012)

The asymmetric unit of the title compound, C44H32P2, conventionally abbreviated BINAP, is one half of the complete chiral BINAP mol­ecule, which adopts a C2 crystallographic point-group symmetry with a twofold axis splitting the mol­ecule in two identical halves; a center of symmetry between mol­ecules further determines the racemic pairs. There are no obvious supra­molecular inter­actions between adjacent BINAP mol­ecules.

Related literature

For applications of triaryl­phosphine ligands in various catalytic reactions, see: Doherty et al. (2012[Doherty, S., Knight, J. G. & Mehdi-Zodeh, H. (2012). Tetrahedron Asymmetry, 23, 209-216.]); Uemura et al. (2012[Uemura, M., Kurono, N. & Ohkuma, T. (2012). Org. Lett. 14, 882-885.]); Onodera et al. (2012[Onodera, G., Suto, M. & Takeuchi, R. (2012). J. Org. Chem. 77, 908-920.]); Lin et al. (2012[Lin, M., Kang, G.-Y. G. Y.-A. & Yu, Z.-X. (2012). J. Am. Chem. Soc. 134, 398-405.]). For applications of 2,2′-bis­(diphenyl­phosphan­yl)-1,1′-binaphthyl (BINAP) as a chiral catalyst in various asymmetric catalysed reactions, see: Kojima & Mikami (2012[Kojima, M. & Mikami, K. (2012). Synlett, 23, 57-61.]); Aikawa et al. (2011[Aikawa, K., Hioki, Y., Shimizu, N. & Mikami, K. (2011). J. Am. Chem. Soc. 133, 20092-20095.]); Ge & Hartwig (2011[Ge, S.-Z. & Hartwig, J. F. (2011). J. Am. Chem. Soc. 133, 16330-16333.]); Moran et al. (2011[Moran, J., Smith, A. G., Carris, R. M., Johnson, J. S. & Krische, M. J. (2011). J. Am. Chem. Soc. 133, 18618-18621.]). For similar diphosphine ligands, see: Kassube et al. (2008[Kassube, J. K., Wadepohl, H. & Gade, L. H. (2008). Adv. Synth. Catal. 350, 1155-1162.]); Fawcett et al. (2005[Fawcett, J., Hope, E. G., Stuart, A. M. & West, A. J. (2005). Acta Cryst. E61, o2484-o2485.]); Wu et al. (2004[Wu, H.-C., Yu, J.-Q. & Spencer, J. B. (2004). Org. Lett. 6, 4675-4678.]). For the related crystal structure of the (S)-enanti­omer (S)-(−)-2,2′-bis­(diphenyl­phosphan­yl)-1,1′-binaphthyl, see: Jones et al. (2003[Jones, M. D., Almeida Paz, F. A., Davies, J. E. & Johnson, B. F. G. (2003). Acta Cryst. E59, o535-o537.]).

[Scheme 1]

Experimental

Crystal data
  • C44H32P2

  • Mr = 622.64

  • Monoclinic, C 2/c

  • a = 19.6120 (8) Å

  • b = 9.2008 (3) Å

  • c = 19.1240 (9) Å

  • β = 107.904 (5)°

  • V = 3283.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.29 × 0.23 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Gemini ultra diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.954, Tmax = 0.968

  • 6234 measured reflections

  • 3052 independent reflections

  • 2314 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 1.03

  • 3052 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2011[Oxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, the triarylphosphine ligands have been well known for their high catalytic activity and high selectivity, and have thus been widely used in various types of reactions, e.g., asymmetrical hydrogen catalysis, Buchwald-Hartwig C—N and C—O formations and Suzuki coupling reactions, etc (Doherty et al. 2012; Uemura et al. 2012; Onodera et al. 2012; Lin et al. 2012). Among them, 2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP), a diphosphine ligand, is well known for its chirality, and has been used as chiral catalyst in various asymmetry catalyzed reaction (Kojima et al. 2012; Aikawa et al. 2011; Ge et al. 2011; Moran et al. 2011). Previously, Jones M. D. etc reported the crystal structure of the (S)-enantiomer (S)-(-)-2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (Jones et al. 2003). But the crystal structure of the racemic BINAP crystal had not been reported so far. Here we report the crystal structure of the racemic 2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl, which may provide some useful structural information for its chiral separation and high catalytic activity / selectivity.

The title compound crystallizes in the centrosymmetric C2/c space group. The asymmetric unit is one half of complete chiral BINAP molecule, the symmetry related part being generated by a twofold rotational axis running along b and across the middle of two moities in the molecule (Fig 1). This structure is similar to the previously reported one for the (S)-enantiomer (S)-(-)-2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (Jones et al. 2003). In the present case, however, there are inversion centers relating molecules into racemic pairs. No obvious supramolecular interactions are present in the crystal structure of (1), which packing diagram is shown in Fig 2.

Related literature top

For applications of triarylphosphine ligands in various catalytic reactions, see: Doherty et al. (2012); Uemura et al. (2012); Onodera et al. (2012); Lin et al. (2012). For applications of 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP) as a chiral catalyst in various asymmetric catalysed reactions, see: Kojima & Mikami (2012); Aikawa et al. (2011); Ge & Hartwig (2011); Moran et al. (2011). For similar diphosphine ligands, see: Kassube et al. (2008); Fawcett et al. (2005); Wu et al. (2004). For the related crystal structure of the (S)-enantiomer (S)-(-)-2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl, see: Jones et al. (2003).

Experimental top

Crystals of the title compound were obtained by recrystalization of racemic 2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl, obtained from Acros Organics as a commerical material: the racemic powders were dissolved in dichloromethane, and after being filtrated some isopropyl alcohol was layered on the resulting solution. After several days, a crop of colorless crystals of (I) were abtained, fron where specimens suitable for single-crystal X-ray diffraction were selected.

Refinement top

All aromatoc hydrogen atoms were added at calculated positions (C-H: 0.93Å) and refined using a riding model with U(H)iso = 1.2× U(C)equiv.

Structure description top

In the past decades, the triarylphosphine ligands have been well known for their high catalytic activity and high selectivity, and have thus been widely used in various types of reactions, e.g., asymmetrical hydrogen catalysis, Buchwald-Hartwig C—N and C—O formations and Suzuki coupling reactions, etc (Doherty et al. 2012; Uemura et al. 2012; Onodera et al. 2012; Lin et al. 2012). Among them, 2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP), a diphosphine ligand, is well known for its chirality, and has been used as chiral catalyst in various asymmetry catalyzed reaction (Kojima et al. 2012; Aikawa et al. 2011; Ge et al. 2011; Moran et al. 2011). Previously, Jones M. D. etc reported the crystal structure of the (S)-enantiomer (S)-(-)-2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (Jones et al. 2003). But the crystal structure of the racemic BINAP crystal had not been reported so far. Here we report the crystal structure of the racemic 2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl, which may provide some useful structural information for its chiral separation and high catalytic activity / selectivity.

The title compound crystallizes in the centrosymmetric C2/c space group. The asymmetric unit is one half of complete chiral BINAP molecule, the symmetry related part being generated by a twofold rotational axis running along b and across the middle of two moities in the molecule (Fig 1). This structure is similar to the previously reported one for the (S)-enantiomer (S)-(-)-2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl (Jones et al. 2003). In the present case, however, there are inversion centers relating molecules into racemic pairs. No obvious supramolecular interactions are present in the crystal structure of (1), which packing diagram is shown in Fig 2.

For applications of triarylphosphine ligands in various catalytic reactions, see: Doherty et al. (2012); Uemura et al. (2012); Onodera et al. (2012); Lin et al. (2012). For applications of 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl (BINAP) as a chiral catalyst in various asymmetric catalysed reactions, see: Kojima & Mikami (2012); Aikawa et al. (2011); Ge & Hartwig (2011); Moran et al. (2011). For similar diphosphine ligands, see: Kassube et al. (2008); Fawcett et al. (2005); Wu et al. (2004). For the related crystal structure of the (S)-enantiomer (S)-(-)-2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl, see: Jones et al. (2003).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2011); cell refinement: CrysAlis PRO (Oxford Diffraction, 2011); data reduction: CrysAlis PRO (Oxford Diffraction, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probabilithy level, and H atoms shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing diagram of I, viewed along the c-direction.
rac-2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl top
Crystal data top
C44H32P2F(000) = 1304
Mr = 622.64Dx = 1.259 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 2381 reflections
a = 19.6120 (8) Åθ = 3.5–29.5°
b = 9.2008 (3) ŵ = 0.16 mm1
c = 19.1240 (9) ÅT = 293 K
β = 107.904 (5)°Column, colourless
V = 3283.7 (2) Å30.29 × 0.23 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
3052 independent reflections
Radiation source: Enhance (Mo) X-ray Source2314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.3592 pixels mm-1θmax = 25.5°, θmin = 3.6°
ω scansh = 1923
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 911
Tmin = 0.954, Tmax = 0.968l = 2023
6234 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0387P)2 + 1.4219P]
where P = (Fo2 + 2Fc2)/3
3052 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C44H32P2V = 3283.7 (2) Å3
Mr = 622.64Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.6120 (8) ŵ = 0.16 mm1
b = 9.2008 (3) ÅT = 293 K
c = 19.1240 (9) Å0.29 × 0.23 × 0.20 mm
β = 107.904 (5)°
Data collection top
Oxford Diffraction Xcalibur Gemini ultra
diffractometer
3052 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2314 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.968Rint = 0.026
6234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
3052 reflectionsΔρmin = 0.22 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.43987 (2)0.96498 (5)0.13904 (3)0.03969 (16)
C10.41174 (9)1.08276 (19)0.20272 (9)0.0348 (4)
C20.46167 (8)1.17151 (17)0.25019 (9)0.0316 (4)
C30.44162 (9)1.26196 (19)0.30150 (9)0.0368 (4)
C40.49012 (11)1.3589 (2)0.34918 (11)0.0492 (5)
H40.53641.36770.34630.059*
C50.47017 (14)1.4398 (3)0.39936 (12)0.0680 (7)
H50.50271.50370.42990.082*
C60.40094 (15)1.4271 (3)0.40508 (13)0.0718 (7)
H60.38821.48040.44050.086*
C70.35255 (13)1.3379 (2)0.35949 (13)0.0609 (6)
H70.30661.33140.36360.073*
C80.37053 (10)1.2543 (2)0.30552 (11)0.0434 (5)
C90.32087 (10)1.1626 (2)0.25612 (12)0.0489 (5)
H90.27401.15820.25760.059*
C100.34033 (9)1.0807 (2)0.20647 (11)0.0450 (5)
H100.30631.02190.17420.054*
C110.38645 (9)0.8015 (2)0.13995 (11)0.0422 (5)
C120.39753 (10)0.7322 (2)0.20704 (12)0.0524 (5)
H120.42780.77460.24940.063*
C130.36481 (11)0.6022 (2)0.21238 (13)0.0581 (6)
H130.37280.55830.25800.070*
C140.32063 (12)0.5375 (2)0.15075 (15)0.0634 (6)
H140.29870.44930.15430.076*
C150.30870 (12)0.6029 (2)0.08377 (15)0.0686 (7)
H150.27860.55880.04180.082*
C160.34129 (11)0.7350 (2)0.07787 (12)0.0585 (6)
H160.33270.77870.03210.070*
C170.39622 (9)1.0482 (2)0.04936 (10)0.0404 (4)
C180.35445 (10)1.1731 (2)0.03891 (11)0.0472 (5)
H180.34281.21370.07830.057*
C190.32997 (11)1.2376 (2)0.02968 (12)0.0573 (6)
H190.30171.32060.03590.069*
C200.34691 (12)1.1805 (3)0.08887 (12)0.0617 (6)
H200.33091.22530.13460.074*
C210.38763 (12)1.0571 (3)0.07949 (12)0.0611 (6)
H210.39871.01710.11930.073*
C220.41240 (11)0.9914 (2)0.01138 (12)0.0529 (5)
H220.44030.90790.00590.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0373 (3)0.0378 (3)0.0424 (3)0.0027 (2)0.0100 (2)0.0060 (2)
C10.0349 (9)0.0343 (9)0.0348 (10)0.0003 (8)0.0099 (8)0.0037 (8)
C20.0341 (9)0.0289 (9)0.0321 (10)0.0028 (7)0.0106 (7)0.0057 (7)
C30.0449 (10)0.0330 (9)0.0338 (10)0.0092 (8)0.0139 (8)0.0087 (8)
C40.0547 (12)0.0490 (12)0.0414 (12)0.0092 (10)0.0112 (9)0.0061 (10)
C50.0838 (17)0.0663 (15)0.0498 (14)0.0151 (13)0.0146 (12)0.0185 (12)
C60.099 (2)0.0709 (16)0.0539 (15)0.0304 (15)0.0354 (14)0.0065 (13)
C70.0728 (15)0.0642 (14)0.0584 (15)0.0275 (13)0.0386 (13)0.0129 (12)
C80.0505 (11)0.0415 (11)0.0445 (11)0.0136 (9)0.0240 (9)0.0132 (9)
C90.0374 (10)0.0544 (12)0.0615 (14)0.0078 (10)0.0248 (10)0.0153 (11)
C100.0340 (10)0.0461 (11)0.0538 (13)0.0030 (9)0.0120 (9)0.0049 (10)
C110.0372 (10)0.0371 (10)0.0491 (12)0.0027 (8)0.0086 (9)0.0020 (9)
C120.0511 (12)0.0467 (12)0.0545 (14)0.0014 (10)0.0091 (10)0.0005 (10)
C130.0571 (13)0.0457 (12)0.0712 (16)0.0027 (11)0.0193 (12)0.0126 (12)
C140.0590 (14)0.0376 (11)0.094 (2)0.0063 (11)0.0240 (13)0.0040 (13)
C150.0681 (15)0.0488 (13)0.0762 (18)0.0184 (12)0.0035 (13)0.0153 (13)
C160.0642 (13)0.0484 (12)0.0534 (14)0.0097 (11)0.0040 (11)0.0036 (11)
C170.0399 (10)0.0405 (10)0.0417 (11)0.0104 (9)0.0138 (8)0.0061 (9)
C180.0494 (11)0.0485 (12)0.0453 (12)0.0019 (10)0.0168 (9)0.0004 (10)
C190.0561 (12)0.0542 (13)0.0612 (15)0.0013 (11)0.0176 (11)0.0115 (12)
C200.0645 (14)0.0730 (16)0.0449 (14)0.0165 (13)0.0130 (11)0.0066 (12)
C210.0715 (15)0.0713 (16)0.0437 (13)0.0170 (13)0.0223 (11)0.0128 (12)
C220.0576 (13)0.0511 (12)0.0516 (13)0.0071 (10)0.0191 (10)0.0106 (10)
Geometric parameters (Å, º) top
P1—C171.833 (2)C11—C121.389 (3)
P1—C111.8364 (19)C12—C131.376 (3)
P1—C11.8370 (18)C12—H120.9300
C1—C21.380 (2)C13—C141.366 (3)
C1—C101.424 (2)C13—H130.9300
C2—C31.431 (2)C14—C151.369 (3)
C2—C2i1.506 (3)C14—H140.9300
C3—C41.414 (3)C15—C161.394 (3)
C3—C81.421 (2)C15—H150.9300
C4—C51.363 (3)C16—H160.9300
C4—H40.9300C17—C181.389 (3)
C5—C61.400 (3)C17—C221.397 (3)
C5—H50.9300C18—C191.384 (3)
C6—C71.351 (3)C18—H180.9300
C6—H60.9300C19—C201.378 (3)
C7—C81.416 (3)C19—H190.9300
C7—H70.9300C20—C211.368 (3)
C8—C91.410 (3)C20—H200.9300
C9—C101.356 (3)C21—C221.382 (3)
C9—H90.9300C21—H210.9300
C10—H100.9300C22—H220.9300
C11—C161.386 (3)
C17—P1—C11104.33 (8)C12—C11—P1117.20 (14)
C17—P1—C1102.99 (8)C13—C12—C11121.6 (2)
C11—P1—C1100.87 (8)C13—C12—H12119.2
C2—C1—C10119.00 (16)C11—C12—H12119.2
C2—C1—P1119.23 (12)C14—C13—C12120.1 (2)
C10—C1—P1121.72 (14)C14—C13—H13119.9
C1—C2—C3120.43 (15)C12—C13—H13119.9
C1—C2—C2i120.30 (15)C13—C14—C15119.7 (2)
C3—C2—C2i119.25 (15)C13—C14—H14120.1
C4—C3—C8118.24 (17)C15—C14—H14120.1
C4—C3—C2122.49 (16)C14—C15—C16120.6 (2)
C8—C3—C2119.27 (16)C14—C15—H15119.7
C5—C4—C3121.1 (2)C16—C15—H15119.7
C5—C4—H4119.4C11—C16—C15120.2 (2)
C3—C4—H4119.4C11—C16—H16119.9
C4—C5—C6120.3 (2)C15—C16—H16119.9
C4—C5—H5119.8C18—C17—C22117.69 (19)
C6—C5—H5119.8C18—C17—P1124.43 (15)
C7—C6—C5120.4 (2)C22—C17—P1117.50 (15)
C7—C6—H6119.8C19—C18—C17120.55 (19)
C5—C6—H6119.8C19—C18—H18119.7
C6—C7—C8121.2 (2)C17—C18—H18119.7
C6—C7—H7119.4C20—C19—C18120.9 (2)
C8—C7—H7119.4C20—C19—H19119.5
C9—C8—C7122.56 (19)C18—C19—H19119.5
C9—C8—C3118.73 (17)C21—C20—C19119.1 (2)
C7—C8—C3118.71 (19)C21—C20—H20120.4
C10—C9—C8121.12 (17)C19—C20—H20120.4
C10—C9—H9119.4C20—C21—C22120.6 (2)
C8—C9—H9119.4C20—C21—H21119.7
C9—C10—C1121.37 (18)C22—C21—H21119.7
C9—C10—H10119.3C21—C22—C17121.1 (2)
C1—C10—H10119.3C21—C22—H22119.5
C16—C11—C12117.79 (18)C17—C22—H22119.5
C16—C11—P1124.71 (16)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC44H32P2
Mr622.64
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.6120 (8), 9.2008 (3), 19.1240 (9)
β (°) 107.904 (5)
V3)3283.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.29 × 0.23 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Gemini ultra
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.954, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
6234, 3052, 2314
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.03
No. of reflections3052
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2011), CrysAlis PRO (Oxford Diffraction, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (projects 11075147 and 51002147) and the Natural Science Foundation of Zhejiang Province (project Y4100610 and LY12E02010).

References

First citationAikawa, K., Hioki, Y., Shimizu, N. & Mikami, K. (2011). J. Am. Chem. Soc. 133, 20092–20095.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDoherty, S., Knight, J. G. & Mehdi-Zodeh, H. (2012). Tetrahedron Asymmetry, 23, 209–216.  Web of Science CrossRef CAS Google Scholar
First citationFawcett, J., Hope, E. G., Stuart, A. M. & West, A. J. (2005). Acta Cryst. E61, o2484–o2485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGe, S.-Z. & Hartwig, J. F. (2011). J. Am. Chem. Soc. 133, 16330–16333.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJones, M. D., Almeida Paz, F. A., Davies, J. E. & Johnson, B. F. G. (2003). Acta Cryst. E59, o535–o537.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKassube, J. K., Wadepohl, H. & Gade, L. H. (2008). Adv. Synth. Catal. 350, 1155–1162.  Web of Science CSD CrossRef CAS Google Scholar
First citationKojima, M. & Mikami, K. (2012). Synlett, 23, 57–61.  CAS Google Scholar
First citationLin, M., Kang, G.-Y. G. Y.-A. & Yu, Z.-X. (2012). J. Am. Chem. Soc. 134, 398–405.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoran, J., Smith, A. G., Carris, R. M., Johnson, J. S. & Krische, M. J. (2011). J. Am. Chem. Soc. 133, 18618–18621.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOnodera, G., Suto, M. & Takeuchi, R. (2012). J. Org. Chem. 77, 908–920.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUemura, M., Kurono, N. & Ohkuma, T. (2012). Org. Lett. 14, 882–885.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWu, H.-C., Yu, J.-Q. & Spencer, J. B. (2004). Org. Lett. 6, 4675–4678.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds