organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Phenyl­sulfon­yl)naphthalene

aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, An'ning East Road No. 967, Gansu Province 730070, People's Republic of China
*Correspondence e-mail: fuying@iccas.ac.cn

(Received 28 June 2012; accepted 6 July 2012; online 14 July 2012)

In the title compound, C16H12O2S, the phenyl ring is nearly perpendicular to the naphthalene system [dihedral angle = 80.3 (1)°]. The packing is consolidated by a weak C—H⋯π inter­action involving neighbouring naphthalene and benzene rings. In addition, there exist two different offset ππ stacking inter­actions between benzene rings and between naphthalene systems of symmetry-related mol­ecules [centroid–centroid distances = 3.876 (9) and 3.566 (4) Å, and slippage = 1.412 and 0.554 Å, respectively.

Related literature

For recent reports on the synthesis of aryl­sulfones, see: Boroujeni (2010[Boroujeni, K. P. (2010). J. Sulfur Chem. 31, 197-203.]); Bahrami et al. (2008[Bahrami, K., Khodei, M. M. & Shahbazi, F. (2008). Tetrahedron Lett. 49, 3931-3934.]). For their application, see: Borys et al. (2012[Borys, K. M., Korzyński, M. D. & Ochal, Z. (2012). Beilstein J. Org. Chem. 8, 259-265.]); Padwa et al. (1990[Padwa, A., Bullock, W. H. & Dyszlewski, A. D. (1990). J. Org. Chem. 55, 955-964.]); Block (1992[Block, E. (1992). Angew. Chem. Int. Ed. Engl. 31, 1135-1178.]); Mackinnon & Wang (1998[Mackinnon, S. M. & Wang, J. Y. (1998). Macromolecules, 31, 7970-7972.]). For single-crystal structures of sulfones, see: Chawdhury & Hargreaves (1971[Chawdhury, S. A. & Hargreaves, A. (1971). Acta Cryst. B27, 548-552.]); Bacon & Curry (1960[Bacon, G. E. & Curry, N. A. (1960). Acta Cryst. 13, 10-14.]); Sime & Abrahams (1960[Sime, J. G. & Abrahams, S. C. (1960). Acta Cryst. 13, 1-9.]); Jeyaraman & Velmurugan (1997[Jeyaraman, J. & Velmurugan, D. (1997). Acta Cryst. C53, 1344-1345.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O2S

  • Mr = 268.32

  • Triclinic, [P \overline 1]

  • a = 7.721 (7) Å

  • b = 9.444 (9) Å

  • c = 9.726 (9) Å

  • α = 86.669 (8)°

  • β = 74.690 (8)°

  • γ = 69.995 (7)°

  • V = 642.4 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.955

  • 4623 measured reflections

  • 2345 independent reflections

  • 1944 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.05

  • 2345 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cgi 0.93 2.90 3.806 (5) 166
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenyl sulphone derivatives are an important class of organic sulfur compounds due to their broad spectrum of biological activities in a wide range of fields such as agrochemicals (Borys et al. 2012), pharmaceuticals (Padwa et al. 1990; Block, 1992) and polymers (Mackinnon & Wang, 1998). The molecular structure is shown in Fig. 1. All bond lengths and angles are in the normal range.

In the molecule of (I),Figure 1, both the naphthalene ring and the phenyl ring adopt essentially planar conformation with a maximum deviation of 0.0032 Å for the phenyl ring and 0.0038 Å for the naphthalene ring. The phenyl ring is nearly perpendicular to the naphthalene ring with the dihedral angle 80.3 (1)°.

The packing is stabilized by a weak C6–H6···π interaction, involving neighbouring naphthalene and benzene rings (-x+1,-y+1,-z) . In addition, there exist two different offset ππ stacking interactions one between the benzene and another between the naphthalene rings of symmetry-related molecules (via -x+1, -y, -z+1 and -x,-y+1, -z operations respectively), with centroid-centroid distances= 3.876 (9) and 3.566 (4), slippage = 1.412 and 0.554 Å respectively.

Related literature top

For recent reports on the synthesis of arylsulfones, see: Boroujeni (2010); Bahrami et al. (2008). For their application, see: Borys et al. (2012); Padwa et al. (1990); Block (1992); Mackinnon & Wang (1998). For single-crystal structures of sulfones, see: Chawdhury & Hargreaves (1971); Bacon & Curry (1960); Sime & Abrahams (1960); Jeyaraman & Velmurugan (1997).

Experimental top

For the synthesis of the title compound,see: Boroujeni (2010); Crystals suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in petroleum ether-ethyl acetate (5:1).

Refinement top

All H atoms were geometrically positioned and refined using a riding model with C—H = 0.93 Å, Uiso(H) = 1.2 Ueq(C).

Structure description top

Phenyl sulphone derivatives are an important class of organic sulfur compounds due to their broad spectrum of biological activities in a wide range of fields such as agrochemicals (Borys et al. 2012), pharmaceuticals (Padwa et al. 1990; Block, 1992) and polymers (Mackinnon & Wang, 1998). The molecular structure is shown in Fig. 1. All bond lengths and angles are in the normal range.

In the molecule of (I),Figure 1, both the naphthalene ring and the phenyl ring adopt essentially planar conformation with a maximum deviation of 0.0032 Å for the phenyl ring and 0.0038 Å for the naphthalene ring. The phenyl ring is nearly perpendicular to the naphthalene ring with the dihedral angle 80.3 (1)°.

The packing is stabilized by a weak C6–H6···π interaction, involving neighbouring naphthalene and benzene rings (-x+1,-y+1,-z) . In addition, there exist two different offset ππ stacking interactions one between the benzene and another between the naphthalene rings of symmetry-related molecules (via -x+1, -y, -z+1 and -x,-y+1, -z operations respectively), with centroid-centroid distances= 3.876 (9) and 3.566 (4), slippage = 1.412 and 0.554 Å respectively.

For recent reports on the synthesis of arylsulfones, see: Boroujeni (2010); Bahrami et al. (2008). For their application, see: Borys et al. (2012); Padwa et al. (1990); Block (1992); Mackinnon & Wang (1998). For single-crystal structures of sulfones, see: Chawdhury & Hargreaves (1971); Bacon & Curry (1960); Sime & Abrahams (1960); Jeyaraman & Velmurugan (1997).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids.
1-(Phenylsulfonyl)naphthalene top
Crystal data top
C16H12O2SZ = 2
Mr = 268.32F(000) = 280
Triclinic, P1Dx = 1.387 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.721 (7) ÅCell parameters from 2200 reflections
b = 9.444 (9) Åθ = 2.2–27.4°
c = 9.726 (9) ŵ = 0.25 mm1
α = 86.669 (8)°T = 296 K
β = 74.690 (8)°Block, colourless
γ = 69.995 (7)°0.25 × 0.23 × 0.19 mm
V = 642.4 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2345 independent reflections
Radiation source: fine-focus sealed tube1944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 98
Tmin = 0.941, Tmax = 0.955k = 1110
4623 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.1481P]
where P = (Fo2 + 2Fc2)/3
2345 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H12O2Sγ = 69.995 (7)°
Mr = 268.32V = 642.4 (10) Å3
Triclinic, P1Z = 2
a = 7.721 (7) ÅMo Kα radiation
b = 9.444 (9) ŵ = 0.25 mm1
c = 9.726 (9) ÅT = 296 K
α = 86.669 (8)°0.25 × 0.23 × 0.19 mm
β = 74.690 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
2345 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1944 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.955Rint = 0.021
4623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
2345 reflectionsΔρmin = 0.32 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2011 (2)0.34105 (19)0.13095 (18)0.0371 (4)
C20.2381 (3)0.2563 (2)0.0103 (2)0.0471 (5)
H20.23560.15840.01840.056*
C30.2797 (3)0.3150 (2)0.1249 (2)0.0552 (5)
H30.30310.25660.20590.066*
C40.2859 (3)0.4559 (2)0.1378 (2)0.0542 (5)
H40.31400.49380.22820.065*
C50.2506 (3)0.5470 (2)0.0172 (2)0.0448 (5)
C60.2557 (3)0.6953 (3)0.0325 (3)0.0622 (6)
H60.28600.73200.12330.075*
C70.2173 (4)0.7842 (3)0.0828 (3)0.0703 (7)
H70.22130.88150.07120.084*
C80.1712 (3)0.7305 (2)0.2201 (3)0.0583 (6)
H80.14500.79290.29890.070*
C90.1642 (3)0.5888 (2)0.2401 (2)0.0460 (5)
H90.13240.55570.33220.055*
C100.2049 (2)0.49129 (19)0.12201 (19)0.0373 (4)
C110.3619 (3)0.21084 (19)0.35340 (18)0.0392 (4)
C120.5126 (3)0.0821 (2)0.2971 (2)0.0502 (5)
H120.50190.01970.23160.060*
C130.6790 (3)0.0470 (3)0.3391 (3)0.0609 (6)
H130.78100.03980.30210.073*
C140.6953 (3)0.1394 (3)0.4350 (2)0.0579 (6)
H140.80860.11580.46190.070*
C150.5448 (3)0.2663 (3)0.4913 (2)0.0577 (5)
H150.55620.32820.55690.069*
C160.3766 (3)0.3030 (2)0.4514 (2)0.0494 (5)
H160.27430.38890.49010.059*
O10.00281 (18)0.35703 (15)0.39697 (14)0.0523 (4)
O20.1356 (2)0.11219 (15)0.26565 (15)0.0560 (4)
S10.15229 (6)0.25301 (5)0.29564 (5)0.04155 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (9)0.0348 (9)0.0422 (9)0.0083 (7)0.0084 (8)0.0034 (7)
C20.0484 (11)0.0388 (10)0.0508 (11)0.0095 (9)0.0128 (9)0.0070 (8)
C30.0608 (14)0.0552 (13)0.0421 (11)0.0088 (11)0.0126 (10)0.0109 (9)
C40.0538 (13)0.0589 (13)0.0405 (10)0.0100 (10)0.0093 (9)0.0048 (9)
C50.0397 (10)0.0430 (11)0.0499 (11)0.0113 (8)0.0131 (9)0.0061 (8)
C60.0703 (15)0.0524 (13)0.0690 (14)0.0276 (12)0.0209 (12)0.0187 (11)
C70.0824 (17)0.0420 (12)0.0986 (19)0.0296 (12)0.0348 (15)0.0123 (13)
C80.0635 (14)0.0398 (11)0.0764 (15)0.0139 (10)0.0290 (12)0.0083 (10)
C90.0474 (11)0.0402 (11)0.0519 (11)0.0119 (9)0.0180 (9)0.0044 (8)
C100.0301 (9)0.0369 (10)0.0445 (10)0.0088 (7)0.0120 (8)0.0007 (8)
C110.0402 (10)0.0362 (10)0.0388 (9)0.0140 (8)0.0061 (8)0.0073 (8)
C120.0511 (12)0.0403 (11)0.0538 (12)0.0113 (9)0.0102 (10)0.0001 (9)
C130.0443 (12)0.0537 (13)0.0706 (14)0.0041 (10)0.0094 (11)0.0084 (11)
C140.0475 (12)0.0718 (15)0.0585 (13)0.0240 (11)0.0187 (10)0.0170 (11)
C150.0602 (14)0.0688 (15)0.0506 (12)0.0265 (12)0.0191 (11)0.0026 (10)
C160.0504 (12)0.0475 (11)0.0454 (11)0.0125 (9)0.0093 (9)0.0014 (9)
O10.0391 (8)0.0590 (9)0.0487 (8)0.0127 (6)0.0016 (6)0.0058 (6)
O20.0611 (9)0.0454 (8)0.0689 (9)0.0308 (7)0.0122 (7)0.0019 (7)
S10.0389 (3)0.0396 (3)0.0451 (3)0.0161 (2)0.0051 (2)0.00010 (19)
Geometric parameters (Å, º) top
C1—C21.369 (3)C9—C101.415 (3)
C1—C101.426 (3)C9—H90.9300
C1—S11.772 (2)C11—C161.378 (3)
C2—C31.397 (3)C11—C121.380 (3)
C2—H20.9300C11—S11.763 (2)
C3—C41.345 (3)C12—C131.377 (3)
C3—H30.9300C12—H120.9300
C4—C51.407 (3)C13—C141.370 (3)
C4—H40.9300C13—H130.9300
C5—C61.413 (3)C14—C151.369 (3)
C5—C101.423 (3)C14—H140.9300
C6—C71.347 (3)C15—C161.378 (3)
C6—H60.9300C15—H150.9300
C7—C81.400 (3)C16—H160.9300
C7—H70.9300O1—S11.4335 (15)
C8—C91.358 (3)O2—S11.4328 (18)
C8—H80.9300
C2—C1—C10120.89 (17)C9—C10—C5117.97 (18)
C2—C1—S1116.45 (16)C9—C10—C1125.12 (17)
C10—C1—S1122.66 (13)C5—C10—C1116.90 (16)
C1—C2—C3120.9 (2)C16—C11—C12120.55 (19)
C1—C2—H2119.6C16—C11—S1121.51 (15)
C3—C2—H2119.6C12—C11—S1117.94 (15)
C4—C3—C2120.03 (19)C13—C12—C11119.3 (2)
C4—C3—H3120.0C13—C12—H12120.4
C2—C3—H3120.0C11—C12—H12120.4
C3—C4—C5121.27 (19)C14—C13—C12120.4 (2)
C3—C4—H4119.4C14—C13—H13119.8
C5—C4—H4119.4C12—C13—H13119.8
C4—C5—C6120.6 (2)C15—C14—C13120.1 (2)
C4—C5—C10120.02 (19)C15—C14—H14120.0
C6—C5—C10119.37 (19)C13—C14—H14120.0
C7—C6—C5120.8 (2)C14—C15—C16120.5 (2)
C7—C6—H6119.6C14—C15—H15119.8
C5—C6—H6119.6C16—C15—H15119.8
C6—C7—C8120.2 (2)C11—C16—C15119.24 (19)
C6—C7—H7119.9C11—C16—H16120.4
C8—C7—H7119.9C15—C16—H16120.4
C9—C8—C7121.1 (2)O2—S1—O1118.25 (10)
C9—C8—H8119.4O2—S1—C11107.09 (9)
C7—C8—H8119.4O1—S1—C11108.84 (10)
C8—C9—C10120.5 (2)O2—S1—C1107.42 (10)
C8—C9—H9119.7O1—S1—C1109.94 (10)
C10—C9—H9119.7C11—S1—C1104.41 (9)
C10—C1—C2—C30.4 (3)C16—C11—C12—C130.5 (3)
S1—C1—C2—C3179.51 (15)S1—C11—C12—C13179.31 (15)
C1—C2—C3—C40.8 (3)C11—C12—C13—C140.4 (3)
C2—C3—C4—C50.2 (3)C12—C13—C14—C150.9 (3)
C3—C4—C5—C6179.36 (19)C13—C14—C15—C160.5 (3)
C3—C4—C5—C100.8 (3)C12—C11—C16—C150.9 (3)
C4—C5—C6—C7178.3 (2)S1—C11—C16—C15178.94 (14)
C10—C5—C6—C70.2 (3)C14—C15—C16—C110.4 (3)
C5—C6—C7—C80.1 (4)C16—C11—S1—O2148.12 (15)
C6—C7—C8—C90.0 (4)C12—C11—S1—O232.06 (17)
C7—C8—C9—C100.5 (3)C16—C11—S1—O119.20 (18)
C8—C9—C10—C50.8 (3)C12—C11—S1—O1160.98 (14)
C8—C9—C10—C1179.78 (18)C16—C11—S1—C198.16 (17)
C4—C5—C10—C9177.90 (17)C12—C11—S1—C181.66 (17)
C6—C5—C10—C90.7 (3)C2—C1—S1—O28.25 (17)
C4—C5—C10—C11.2 (3)C10—C1—S1—O2172.61 (14)
C6—C5—C10—C1179.75 (17)C2—C1—S1—O1138.16 (15)
C2—C1—C10—C9178.39 (18)C10—C1—S1—O142.70 (17)
S1—C1—C10—C92.5 (2)C2—C1—S1—C11105.24 (15)
C2—C1—C10—C50.6 (3)C10—C1—S1—C1173.90 (15)
S1—C1—C10—C5178.48 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi0.932.903.806 (5)166
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H12O2S
Mr268.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.721 (7), 9.444 (9), 9.726 (9)
α, β, γ (°)86.669 (8), 74.690 (8), 69.995 (7)
V3)642.4 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.941, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
4623, 2345, 1944
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.05
No. of reflections2345
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.32

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 benzene ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi0.932.8963.806 (5)166
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (grant No. 20962017) and the Natural Science Foundation of Gansu Province, China (grant No. 1107RJZA263).

References

First citationBacon, G. E. & Curry, N. A. (1960). Acta Cryst. 13, 10–14.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBahrami, K., Khodei, M. M. & Shahbazi, F. (2008). Tetrahedron Lett. 49, 3931–3934.  Web of Science CrossRef CAS Google Scholar
First citationBlock, E. (1992). Angew. Chem. Int. Ed. Engl. 31, 1135–1178.  CrossRef Web of Science Google Scholar
First citationBoroujeni, K. P. (2010). J. Sulfur Chem. 31, 197–203.  CAS Google Scholar
First citationBorys, K. M., Korzyński, M. D. & Ochal, Z. (2012). Beilstein J. Org. Chem. 8, 259–265.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChawdhury, S. A. & Hargreaves, A. (1971). Acta Cryst. B27, 548–552.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJeyaraman, J. & Velmurugan, D. (1997). Acta Cryst. C53, 1344–1345.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMackinnon, S. M. & Wang, J. Y. (1998). Macromolecules, 31, 7970–7972.  Web of Science CrossRef CAS Google Scholar
First citationPadwa, A., Bullock, W. H. & Dyszlewski, A. D. (1990). J. Org. Chem. 55, 955–964.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSime, J. G. & Abrahams, S. C. (1960). Acta Cryst. 13, 1–9.  CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds