supplementary materials


is5260 scheme

Acta Cryst. (2013). E69, o779    [ doi:10.1107/S1600536813010155 ]

2-[(2-Chloroquinolin-3-yl)(hydroxy)methyl]acrylonitrile

T. Anuradha, J. Srinivasan, P. R. Seshadri and M. Bakthadoss

Abstract top

In the title compound, C13H9ClN2O, the dihedral angle between the acrylonitrile C=C-CN plane and the quilonine ring system is 71.3 (2)°. In the crystal, molecules are linked by O-H...N hydrogen bonds, forming chains along [01-1]. The chains are linked into a three-dimensional network through C-H...N interactions.

Comment top

2-Chloro substituted quinolines are vital synthetic intermediates in the construction of a large number of linearly fusedtri- and tetra-cyclic quinolines studied for the DNA intercalating properties (Dutta et al., 2002). Acrylonitrile derivatives have been shown to possess antitubercular and antitumour activities (Ohsumi et al., 1998) and also in membranetechnology, synthesis and medicinal chemistry (Saczewski et al., 2004).

In the title compound, the acrylonitrile (C11–C13/N2) and 2-chloroquilonine (C1–C9/N1/Cl) make a dihedral angle of 71.3 (2)°. Both the units are essentially planar with r.m.s. deviations of 0.012 and 0.008 Å, respectively. The hydroxyl group is anti-periplanar with the 2-chloroquilonine [torsion angle of O1—C10—C9—C1 = -155.10 (16)°] and -syn clinal with the acrylonitrile [torsion angle of O1—C10—C11—C13 = -52.3 (2)°]. The crystal structure is stabilized by intermolecular C—H···N and O—H···N interactions (Table 1).

Related literature top

For the biological activity of quinoline and arcylonitrile compounds, see: Dutta et al. (2002); Ohsumi et al. (1998); Saczewski et al. (2004).

Experimental top

A mixture of 2-chloroquinoline-3-carbaldehyde (0.1 g, 0.52 mmol), acrylonitrile (0.051 ml, 0.78 mmol), and DABCO (0.017 g, 0.15 mmol), was kept at room temperature for 3 days. After completion of the reaction (indicated by TLC), the reaction mixture was extracted with ethylacetate (3 × 15 ml). The combined organic layer subsequently washed with dil.HCl and dried over anhydrous Na2SO4. Solvent was evaporated under reduced pressure, crude product was obtained and purified by column chromatography eluting with 8% ethylacetate in hexane afforded the alcohol 2-[(2-chloroquinolin-3-yl)(hydroxy)methyl]acrylonitrile as a colourless solid.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.82 Å and C—H = 0.93 or 0.98 Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme with 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of packing of the molecules with hydrogen bonds (dashed lines).
2-[(2-Chloroquinolin-3-yl)(hydroxy)methyl]acrylonitrile top
Crystal data top
C13H9ClN2OF(000) = 504
Mr = 244.67Dx = 1.323 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2423 reflections
a = 12.2879 (12) Åθ = 2.7–28.3°
b = 9.6422 (11) ŵ = 0.30 mm1
c = 10.3642 (12) ÅT = 293 K
V = 1228.0 (2) Å3Block, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2423 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1516
Tmin = 0.943, Tmax = 0.971k = 1211
6334 measured reflectionsl = 1311
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.0827P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.14 e Å3
2423 reflectionsΔρmin = 0.14 e Å3
156 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.015 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 819 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.02 (7)
Crystal data top
C13H9ClN2OV = 1228.0 (2) Å3
Mr = 244.67Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.2879 (12) ŵ = 0.30 mm1
b = 9.6422 (11) ÅT = 293 K
c = 10.3642 (12) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2423 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2144 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.971Rint = 0.031
6334 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.14 e Å3
S = 1.02Δρmin = 0.14 e Å3
2423 reflectionsAbsolute structure: Flack (1983), 819 Friedel pairs
156 parametersFlack parameter: 0.02 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.29993 (4)1.02688 (6)0.48433 (7)0.06601 (17)
O10.22815 (13)0.60309 (15)0.62021 (17)0.0682 (4)
H10.26560.57700.68110.102*
N10.16299 (12)0.95206 (16)0.30888 (16)0.0476 (3)
N20.02036 (17)0.7266 (3)0.7546 (3)0.0870 (7)
C10.20463 (12)0.91298 (18)0.41795 (18)0.0438 (4)
C20.08750 (12)0.86715 (18)0.25212 (17)0.0441 (4)
C30.04132 (16)0.9065 (2)0.1326 (2)0.0574 (5)
H30.06170.98970.09410.069*
C40.03276 (18)0.8230 (2)0.0741 (2)0.0643 (5)
H40.06280.84960.00450.077*
C50.06450 (18)0.6974 (3)0.1306 (2)0.0698 (6)
H50.11570.64180.08940.084*
C60.02145 (18)0.6556 (2)0.2451 (2)0.0637 (5)
H60.04280.57160.28130.076*
C70.05581 (13)0.73997 (18)0.30916 (19)0.0467 (4)
C80.10462 (14)0.70438 (18)0.42751 (19)0.0500 (4)
H80.08500.62190.46780.060*
C90.18017 (11)0.78848 (16)0.4845 (2)0.0427 (3)
C100.23288 (14)0.7498 (2)0.6112 (2)0.0499 (4)
H100.30910.77960.61060.060*
C110.17479 (15)0.8165 (2)0.7227 (2)0.0531 (4)
C120.06476 (15)0.7679 (2)0.7430 (2)0.0596 (5)
C130.2182 (2)0.9086 (3)0.8014 (3)0.0818 (8)
H13A0.17800.94280.87040.098*
H13B0.28900.93940.78780.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0630 (2)0.0706 (3)0.0645 (3)0.0222 (2)0.0026 (3)0.0007 (3)
O10.0915 (10)0.0563 (8)0.0569 (9)0.0187 (7)0.0204 (8)0.0116 (7)
N10.0539 (7)0.0462 (8)0.0426 (8)0.0018 (6)0.0047 (7)0.0098 (6)
N20.0582 (10)0.1206 (18)0.0821 (17)0.0155 (11)0.0037 (10)0.0078 (14)
C10.0430 (7)0.0452 (8)0.0432 (9)0.0038 (6)0.0047 (7)0.0019 (7)
C20.0484 (7)0.0457 (8)0.0382 (9)0.0043 (6)0.0028 (7)0.0058 (7)
C30.0692 (10)0.0596 (11)0.0433 (11)0.0076 (9)0.0002 (9)0.0132 (9)
C40.0708 (11)0.0765 (14)0.0456 (11)0.0133 (10)0.0115 (10)0.0020 (10)
C50.0709 (11)0.0768 (14)0.0616 (14)0.0064 (10)0.0156 (12)0.0068 (12)
C60.0722 (11)0.0581 (11)0.0609 (14)0.0126 (9)0.0076 (11)0.0040 (10)
C70.0521 (8)0.0450 (9)0.0430 (10)0.0008 (7)0.0004 (8)0.0041 (7)
C80.0586 (8)0.0426 (8)0.0487 (10)0.0024 (7)0.0025 (8)0.0123 (7)
C90.0456 (6)0.0449 (8)0.0376 (8)0.0054 (5)0.0010 (8)0.0059 (8)
C100.0493 (8)0.0561 (10)0.0443 (9)0.0061 (7)0.0079 (8)0.0077 (8)
C110.0526 (8)0.0632 (11)0.0436 (10)0.0009 (8)0.0064 (8)0.0053 (9)
C120.0574 (10)0.0746 (13)0.0469 (11)0.0031 (9)0.0044 (9)0.0002 (9)
C130.0761 (13)0.102 (2)0.0678 (16)0.0144 (13)0.0020 (13)0.0238 (16)
Geometric parameters (Å, º) top
Cl—C11.7466 (17)C5—H50.9300
O1—C101.419 (3)C6—C71.416 (3)
O1—H10.8200C6—H60.9300
N1—C11.297 (2)C7—C81.408 (3)
N1—C21.370 (2)C8—C91.367 (2)
N2—C121.125 (3)C8—H80.9300
C1—C91.417 (2)C9—C101.511 (3)
C2—C31.414 (3)C10—C111.504 (3)
C2—C71.416 (2)C10—H100.9800
C3—C41.358 (3)C11—C131.318 (3)
C3—H30.9300C11—C121.447 (3)
C4—C51.401 (4)C13—H13A0.9300
C4—H40.9300C13—H13B0.9300
C5—C61.360 (3)
C10—O1—H1109.5C8—C7—C2117.24 (16)
C1—N1—C2117.89 (15)C6—C7—C2119.12 (18)
N1—C1—C9125.93 (16)C9—C8—C7121.42 (16)
N1—C1—Cl115.16 (13)C9—C8—H8119.3
C9—C1—Cl118.90 (14)C7—C8—H8119.3
N1—C2—C3119.17 (16)C8—C9—C1115.88 (17)
N1—C2—C7121.64 (16)C8—C9—C10121.34 (16)
C3—C2—C7119.19 (17)C1—C9—C10122.78 (15)
C4—C3—C2120.07 (18)O1—C10—C11110.90 (18)
C4—C3—H3120.0O1—C10—C9106.62 (16)
C2—C3—H3120.0C11—C10—C9111.04 (14)
C3—C4—C5120.80 (19)O1—C10—H10109.4
C3—C4—H4119.6C11—C10—H10109.4
C5—C4—H4119.6C9—C10—H10109.4
C6—C5—C4120.8 (2)C13—C11—C12120.5 (2)
C6—C5—H5119.6C13—C11—C10124.89 (19)
C4—C5—H5119.6C12—C11—C10114.60 (17)
C5—C6—C7120.0 (2)N2—C12—C11177.2 (3)
C5—C6—H6120.0C11—C13—H13A120.0
C7—C6—H6120.0C11—C13—H13B120.0
C8—C7—C6123.64 (17)H13A—C13—H13B120.0
C2—N1—C1—C90.7 (3)C2—C7—C8—C90.6 (3)
C2—N1—C1—Cl179.85 (13)C7—C8—C9—C10.7 (3)
C1—N1—C2—C3179.50 (16)C7—C8—C9—C10179.68 (17)
C1—N1—C2—C70.5 (2)N1—C1—C9—C80.8 (3)
N1—C2—C3—C4179.27 (18)Cl—C1—C9—C8179.74 (13)
C7—C2—C3—C40.2 (3)N1—C1—C9—C10179.58 (17)
C2—C3—C4—C50.0 (3)Cl—C1—C9—C100.2 (2)
C3—C4—C5—C60.4 (4)C8—C9—C10—O125.3 (2)
C4—C5—C6—C70.5 (4)C1—C9—C10—O1155.10 (16)
C5—C6—C7—C8179.8 (2)C8—C9—C10—C1195.6 (2)
C5—C6—C7—C20.3 (3)C1—C9—C10—C1184.0 (2)
N1—C2—C7—C80.4 (2)O1—C10—C11—C13125.4 (2)
C3—C2—C7—C8179.43 (17)C9—C10—C11—C13116.3 (3)
N1—C2—C7—C6179.12 (18)O1—C10—C11—C1252.3 (2)
C3—C2—C7—C60.1 (3)C9—C10—C11—C1266.1 (2)
C6—C7—C8—C9178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.992.781 (2)161
C10—H10···N2ii0.982.573.385 (3)140
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.992.781 (2)161
C10—H10···N2ii0.982.573.385 (3)140
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z.
Acknowledgements top

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.

references
References top

Bruker (2004). SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.

Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.

Dutta, N. J., Khunt, R. C. & Parikh, A. R. (2002). Indian J. Chem. Sect. B, 41, 433–435.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Ohsumi, K., Nakagawa, R., Fukuda, Y., Hatanaka, T., Morinaga, Y., Nihei, Y., Ohishi, K., Suga, Y., Akiyama, Y. & Tsuji, T. (1998). J. Med. Chem. 41, 3022–3032.

Saczewski, F., Reszka, P., Gdaniec, M., Grunert, R. & Bednarski, P. J. (2004). J. Med. Chem. 47, 3438–3449.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.