supplementary materials


rk2400 scheme

Acta Cryst. (2013). E69, o781    [ doi:10.1107/S1600536813010404 ]

12-Dimethylamino-2,2-difluoro-8-phenyl-1[lambda]5,3-diaza-2[lambda]4-boratricyclo[7.3.0.03,7]dodeca-1(12),4,6,8,10-pentaen-1-ylium

Z.-Y. Wang

Abstract top

In the title boron-dipyrromethene derivative, C17H16BF2N3, the benzene ring and the boron-dipyrromethene mean plane form a dihedral angle of 55.82 (8)°. In the crystal, pairs of C-H...F interactions link the molecules, forming inversion dimers. Further C-H...F interactions link the dimers into a three-dimensional network.

Comment top

Fluorescent dyes, especially 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY), have been led to the increased research interest in these molecules lately, BODIPYs have found wide applications in fluorescence labels and biomolecular sensors (Trieflinger et al., 2005), due to their remarkable properties, including large molar absorption coefficient, sharp fluorescence emissions, high fluorescence quantum yields, and high photophysical stability. As part of our ongoing studies (Jiao et al., 2011), we have obtained the title compound, and report its molecular structure here (Fig. 1). The bond lengths and angles are within normal ranges. By short contact C1—H1···F2i = 2.512Å, molecule forms 10-members centrosymmetrical dimers. Next short contact C17—H17···F2ii = 2.491Å form a three-dimensional network, which seem to be very effective in the stabilization of the crystal structure (Fig. 2). Symmetry codes: (i) -x, 2-y, 1-z; (ii) -x, 2-y, 2-z.

Related literature top

For the synthesis and applications of related 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene derivatives, see: Trieflinger et al. (2005). For related structures, see: Jiao et al. (2011).

Experimental top

To 4,4-difluoro-8-phenyl-4-bora-3a,4a-diaza-s-indacene (134 mg, 0.5 mmol) in 3 ml of DMF. was added Potassium tert-butoxide (561 mg, 5 mmol). After stirring at 323 k for 3 h, the reaction was monitored by TLC, then the mixture was poured into water (50 ml), adjusted pH value to 7 with hydrochloric acid and extracted with CH2Cl2 (3×30 ml). Organic layers were combined, dried over Mg2SO4, and evaporated to dryness under vacuum. Purification was performed by column chromatography on silica gel using hexane / CH2Cl2 (v/v, 2:1) as eluent, from which the desired product was obtained in 51% yield (80 mg).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93Å with Uiso(H) = 1.2Ueq(C) for aromatic H and C—H = 0.96Å with Uiso(H) = 1.5Ueq(C) for methyl H.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title molecule showing the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram of the title compound. Short H···F contacts are showed by dashed lines.
12-Dimethylamino-2,2-difluoro-8-phenyl-1λ5,3-diaza-2λ4-boratricyclo[7.3.0.03,7]dodeca-1(12),4,6,8,10-pentaen-1-ylium top
Crystal data top
C17H16BF2N3F(000) = 648
Mr = 311.14Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4251 reflections
a = 7.8033 (6) Åθ = 2.7–24.3°
b = 25.524 (2) ŵ = 0.10 mm1
c = 9.9776 (5) ÅT = 295 K
β = 128.671 (4)°Block, colourless
V = 1551.5 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2736 independent reflections
Radiation source: fine-focus sealed tube2025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.972, Tmax = 0.981k = 3030
11054 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.2638P]
where P = (Fo2 + 2Fc2)/3
2736 reflections(Δ/σ)max = 0.005
210 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C17H16BF2N3V = 1551.5 (2) Å3
Mr = 311.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8033 (6) ŵ = 0.10 mm1
b = 25.524 (2) ÅT = 295 K
c = 9.9776 (5) Å0.30 × 0.20 × 0.20 mm
β = 128.671 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2736 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2025 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.027
11054 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.14 e Å3
2736 reflectionsAbsolute structure: ?
210 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.28223 (17)0.91338 (5)0.54009 (14)0.0842 (4)
F20.0433 (2)0.98113 (4)0.67169 (16)0.0884 (4)
N10.0902 (2)0.90034 (6)0.65707 (18)0.0593 (4)
N20.0100 (2)0.91017 (5)0.84906 (17)0.0543 (4)
N30.2640 (3)0.95619 (7)0.8700 (2)0.0779 (5)
C10.1083 (4)0.91003 (9)0.5324 (3)0.0760 (6)
H10.02170.93350.44230.091*
C20.2720 (4)0.88033 (10)0.5591 (3)0.0821 (6)
H20.31550.87980.49100.098*
C30.3621 (3)0.85096 (8)0.7062 (2)0.0685 (5)
H30.47720.82720.75540.082*
C40.2477 (3)0.86380 (7)0.7662 (2)0.0552 (4)
C50.2796 (3)0.84981 (6)0.9186 (2)0.0510 (4)
C60.4562 (3)0.81223 (7)1.0379 (2)0.0563 (4)
C70.4630 (4)0.76322 (7)0.9807 (3)0.0757 (6)
H70.35190.75330.86780.091*
C80.6331 (5)0.72935 (9)1.0903 (4)0.0968 (8)
H80.63660.69661.05130.116*
C90.7971 (5)0.74379 (12)1.2564 (4)0.1039 (9)
H90.91260.72091.32950.125*
C100.7929 (4)0.79204 (11)1.3165 (3)0.0923 (7)
H100.90400.80151.43000.111*
C110.6232 (3)0.82612 (8)1.2073 (2)0.0696 (5)
H110.62030.85871.24740.084*
C120.1544 (3)0.87210 (6)0.9555 (2)0.0512 (4)
C130.1508 (3)0.86084 (7)1.0927 (2)0.0629 (5)
H130.24190.83721.18110.075*
C140.0056 (3)0.88989 (8)1.0739 (3)0.0705 (5)
H140.04270.88971.14620.085*
C150.1061 (3)0.92141 (7)0.9228 (2)0.0621 (5)
C160.3699 (4)0.99063 (10)0.7212 (4)0.1032 (8)
H16A0.26011.00990.72660.155*
H16B0.46501.01460.72080.155*
H16C0.45450.97000.61810.155*
C170.3488 (4)0.96200 (12)0.9644 (3)0.1063 (9)
H17A0.31070.93171.03490.159*
H17B0.50570.96550.88470.159*
H17C0.28600.99261.03560.159*
B10.0669 (3)0.92741 (8)0.6751 (3)0.0601 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0555 (6)0.1025 (9)0.0600 (7)0.0046 (6)0.0193 (6)0.0029 (6)
F20.1155 (10)0.0568 (7)0.0922 (9)0.0042 (6)0.0646 (8)0.0128 (6)
N10.0582 (8)0.0667 (9)0.0467 (8)0.0010 (7)0.0297 (7)0.0060 (7)
N20.0504 (8)0.0549 (8)0.0527 (8)0.0015 (6)0.0299 (7)0.0012 (6)
N30.0586 (9)0.0861 (12)0.0789 (12)0.0042 (9)0.0379 (9)0.0200 (9)
C10.0825 (14)0.0895 (14)0.0521 (11)0.0032 (12)0.0402 (11)0.0119 (10)
C20.0860 (15)0.1096 (17)0.0647 (13)0.0059 (13)0.0539 (12)0.0010 (12)
C30.0648 (11)0.0866 (13)0.0593 (11)0.0004 (10)0.0414 (10)0.0020 (10)
C40.0523 (9)0.0622 (10)0.0466 (9)0.0033 (8)0.0287 (8)0.0012 (8)
C50.0501 (9)0.0512 (9)0.0462 (9)0.0036 (7)0.0274 (8)0.0015 (7)
C60.0579 (10)0.0579 (10)0.0564 (11)0.0046 (8)0.0373 (9)0.0069 (8)
C70.0912 (15)0.0622 (11)0.0837 (14)0.0110 (11)0.0595 (13)0.0051 (10)
C80.122 (2)0.0736 (14)0.128 (2)0.0338 (15)0.094 (2)0.0272 (15)
C90.0907 (18)0.109 (2)0.126 (2)0.0468 (16)0.0742 (19)0.0593 (18)
C100.0657 (13)0.1115 (19)0.0761 (15)0.0170 (13)0.0327 (12)0.0309 (14)
C110.0610 (11)0.0743 (12)0.0601 (12)0.0052 (10)0.0312 (10)0.0095 (10)
C120.0515 (9)0.0515 (9)0.0472 (9)0.0021 (7)0.0292 (8)0.0016 (7)
C130.0655 (11)0.0714 (11)0.0520 (10)0.0016 (9)0.0368 (9)0.0004 (9)
C140.0677 (12)0.0925 (14)0.0606 (12)0.0045 (11)0.0446 (10)0.0108 (10)
C150.0522 (10)0.0667 (11)0.0604 (11)0.0061 (9)0.0317 (9)0.0164 (9)
C160.0863 (16)0.0873 (16)0.119 (2)0.0278 (14)0.0557 (16)0.0073 (15)
C170.0768 (15)0.141 (2)0.1026 (19)0.0081 (15)0.0569 (15)0.0398 (16)
B10.0562 (12)0.0545 (11)0.0519 (12)0.0006 (9)0.0253 (10)0.0022 (9)
Geometric parameters (Å, º) top
F1—B11.392 (2)C6—C71.390 (3)
F2—B11.387 (2)C7—C81.375 (3)
N1—C11.359 (2)C7—H70.9300
N1—C41.376 (2)C8—C91.368 (4)
N1—B11.513 (3)C8—H80.9300
N2—C151.369 (2)C9—C101.379 (4)
N2—C121.420 (2)C9—H90.9300
N2—B11.562 (3)C10—C111.376 (3)
N3—C151.331 (2)C10—H100.9300
N3—C171.458 (3)C11—H110.9300
N3—C161.458 (3)C12—C131.416 (2)
C1—C21.361 (3)C13—C141.337 (3)
C1—H10.9300C13—H130.9300
C2—C31.386 (3)C14—C151.435 (3)
C2—H20.9300C14—H140.9300
C3—C41.388 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.425 (2)C16—H16C0.9600
C5—C121.365 (2)C17—H17A0.9600
C5—C61.479 (2)C17—H17B0.9600
C6—C111.389 (3)C17—H17C0.9600
C1—N1—C4107.13 (16)C11—C10—C9119.5 (2)
C1—N1—B1125.53 (16)C11—C10—H10120.2
C4—N1—B1127.26 (14)C9—C10—H10120.2
C15—N2—C12106.50 (14)C10—C11—C6120.6 (2)
C15—N2—B1131.83 (15)C10—C11—H11119.7
C12—N2—B1121.37 (14)C6—C11—H11119.7
C15—N3—C17119.6 (2)C5—C12—C13128.79 (16)
C15—N3—C16126.89 (19)C5—C12—N2123.22 (15)
C17—N3—C16113.53 (19)C13—C12—N2107.89 (15)
N1—C1—C2109.95 (18)C14—C13—C12108.66 (17)
N1—C1—H1125.0C14—C13—H13125.7
C2—C1—H1125.0C12—C13—H13125.7
C1—C2—C3107.53 (18)C13—C14—C15108.04 (17)
C1—C2—H2126.2C13—C14—H14126.0
C3—C2—H2126.2C15—C14—H14126.0
C2—C3—C4106.95 (19)N3—C15—N2127.54 (18)
C2—C3—H3126.5N3—C15—C14123.55 (18)
C4—C3—H3126.5N2—C15—C14108.89 (16)
N1—C4—C3108.44 (16)N3—C16—H16A109.5
N1—C4—C5119.19 (15)N3—C16—H16B109.5
C3—C4—C5132.08 (17)H16A—C16—H16B109.5
C12—C5—C4120.46 (15)N3—C16—H16C109.5
C12—C5—C6121.14 (15)H16A—C16—H16C109.5
C4—C5—C6118.36 (15)H16B—C16—H16C109.5
C11—C6—C7118.84 (18)N3—C17—H17A109.5
C11—C6—C5120.53 (16)N3—C17—H17B109.5
C7—C6—C5120.58 (17)H17A—C17—H17B109.5
C8—C7—C6120.3 (2)N3—C17—H17C109.5
C8—C7—H7119.8H17A—C17—H17C109.5
C6—C7—H7119.8H17B—C17—H17C109.5
C9—C8—C7120.1 (2)F2—B1—F1109.21 (15)
C9—C8—H8119.9F2—B1—N1108.58 (16)
C7—C8—H8119.9F1—B1—N1110.18 (16)
C8—C9—C10120.6 (2)F2—B1—N2110.87 (15)
C8—C9—H9119.7F1—B1—N2109.63 (16)
C10—C9—H9119.7N1—B1—N2108.35 (14)
C4—N1—C1—C20.4 (2)C15—N2—C12—C5177.30 (15)
B1—N1—C1—C2177.39 (18)B1—N2—C12—C52.9 (2)
N1—C1—C2—C30.4 (3)C15—N2—C12—C130.65 (18)
C1—C2—C3—C40.2 (2)B1—N2—C12—C13173.74 (15)
C1—N1—C4—C30.3 (2)C5—C12—C13—C14176.43 (17)
B1—N1—C4—C3177.21 (16)N2—C12—C13—C140.0 (2)
C1—N1—C4—C5174.28 (16)C12—C13—C14—C150.6 (2)
B1—N1—C4—C52.6 (3)C17—N3—C15—N2178.89 (18)
C2—C3—C4—N10.1 (2)C16—N3—C15—N20.4 (3)
C2—C3—C4—C5173.55 (19)C17—N3—C15—C142.5 (3)
N1—C4—C5—C120.4 (2)C16—N3—C15—C14178.2 (2)
C3—C4—C5—C12173.53 (18)C12—N2—C15—N3177.73 (17)
N1—C4—C5—C6177.34 (15)B1—N2—C15—N38.7 (3)
C3—C4—C5—C64.2 (3)C12—N2—C15—C141.01 (18)
C12—C5—C6—C1156.0 (2)B1—N2—C15—C14172.56 (17)
C4—C5—C6—C11121.79 (18)C13—C14—C15—N3177.78 (17)
C12—C5—C6—C7126.68 (19)C13—C14—C15—N21.0 (2)
C4—C5—C6—C755.6 (2)C1—N1—B1—F251.6 (2)
C11—C6—C7—C80.4 (3)C4—N1—B1—F2124.74 (18)
C5—C6—C7—C8177.02 (19)C1—N1—B1—F168.0 (2)
C6—C7—C8—C90.1 (4)C4—N1—B1—F1115.69 (19)
C7—C8—C9—C100.7 (4)C1—N1—B1—N2172.08 (16)
C8—C9—C10—C110.8 (4)C4—N1—B1—N24.2 (2)
C9—C10—C11—C60.3 (3)C15—N2—B1—F263.9 (2)
C7—C6—C11—C100.3 (3)C12—N2—B1—F2123.27 (17)
C5—C6—C11—C10177.12 (18)C15—N2—B1—F156.7 (2)
C4—C5—C12—C13175.20 (16)C12—N2—B1—F1116.07 (17)
C6—C5—C12—C137.1 (3)C15—N2—B1—N1176.99 (16)
C4—C5—C12—N20.7 (2)C12—N2—B1—N14.2 (2)
C6—C5—C12—N2176.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F2i0.932.513.291 (3)142
C17—H17C···F2ii0.962.493.282 (3)140
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F2i0.932.5123.291 (3)142
C17—H17C···F2ii0.962.4913.282 (3)140
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z+2.
Acknowledgements top

This work was supported by the Research Culture Funds of Anhui Normal University (160–721137).

references
References top

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Jiao, L. J., Pang, W. D., Zhou, J. Y., Wei, Y., Mu, X. L., Bai, G. F. & Hao, E. H. (2011). J. Org. Chem. 76, 9988–9996.

Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Trieflinger, C., Rurack, K. & Daub, J. (2005). Angew. Chem. Int. Ed. 44, 2288–2291.