supplementary materials


su2589 scheme

Acta Cryst. (2013). E69, o804    [ doi:10.1107/S1600536813011161 ]

L-Histidinium p-toluenesulfonate

S. Muralidharan, P. Nagapandiselvi, T. Srinivasan, R. Gopalakrishnan and D. Velmurugan

Abstract top

In the title salt, C6H10N3O2+·C7H7O3S-, the imidazole ring makes a dihedral angle of 70.93 (12)° with the plane of the toluene ring. In the crystal, the ions are linked via N-H...O and weak C-H...O hydrogen bonds forming two-dimensional networks lying parallel to (001). These networks are linked via C-H...[pi] interactions, forming a three-dimensional structure.

Comment top

The asymmetric unit of the title compound, Fig. 1, contains an L-histidinium cation and a 4-toluenesulfonate anion. The histidine molecule exists as an histidinium ion due to the protonation at the N atom of the imidazole ring. The 4-toluenesulfonic acid exists as a 4-toluenesulfonate since the proton is transferred to the amino acid.

In the crystal, the imidazole ring (N1/N2/C8-C10) makes a dihedral angle of 70.93 (12)° with the toluene ring (C1-C6).

In the crystal, the ions are linked via N-H···O and weak C-H···O hydrogen bonds forming two-dimensional networks lying parallel to (001); see Table 1 and Fig. 2. These networks are linked via C-H···π interactions forming a three-dimensional structure.

Related literature top

For related structures of 4-toluenesulfonate salts, see: Koshima et al. (2004); Biradha & Mahata (2005); Sivakumar et al. (2012). For the structure of L-histidine, see: Madden et al. (1972); Andra et al. (2010).

Experimental top

L-histidine and 4-toluenesulfonic acid were mixed in an equimolar (1:1) ratio using distilled water as solvent and stirred for 1 h, giving a clear solution. The solution was filtered into a clean beaker and optimally closed and kept at room temperature for slow evaporation. After a period of 10 days, block-like colourless crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

The NH3 H atoms were located in a difference Fourier map and refined freely. The NH H atoms and the C-bound H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å, C—H = 0.93 and 0.98 Å for CH(aromatic) and CH(methine) H atoms, respectively, and 0.96 Å for CH2 and CH3 H atoms, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H-atoms not involved in hydrogen bonds have been omitted for clarity).
L-Histidinium p-toluenesulfonate top
Crystal data top
C6H10N3O2+·C7H7O3SF(000) = 688
Mr = 327.36Dx = 1.466 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3638 reflections
a = 5.2700 (2) Åθ = 2.1–28.3°
b = 7.3691 (3) ŵ = 0.25 mm1
c = 38.2042 (14) ÅT = 293 K
V = 1483.67 (10) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3638 independent reflections
Radiation source: fine-focus sealed tube3533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.930, Tmax = 0.952k = 96
8400 measured reflectionsl = 4150
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.5138P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.014
3638 reflectionsΔρmax = 0.22 e Å3
212 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 1479 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.07 (7)
Crystal data top
C6H10N3O2+·C7H7O3SV = 1483.67 (10) Å3
Mr = 327.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.2700 (2) ŵ = 0.25 mm1
b = 7.3691 (3) ÅT = 293 K
c = 38.2042 (14) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3638 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3533 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.952Rint = 0.022
8400 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.22 e Å3
S = 1.20Δρmin = 0.29 e Å3
3638 reflectionsAbsolute structure: Flack (1983), 1479 Friedel pairs
212 parametersFlack parameter: 0.07 (7)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5686 (4)0.8856 (3)0.08354 (5)0.0267 (4)
C20.3546 (5)0.8904 (3)0.06249 (6)0.0378 (5)
H20.24470.98910.06330.045*
C30.3067 (5)0.7455 (4)0.04012 (6)0.0445 (6)
H30.16450.74930.02570.053*
C40.4653 (5)0.5955 (3)0.03871 (6)0.0410 (5)
C50.6786 (5)0.5940 (3)0.05970 (6)0.0413 (5)
H50.78880.49560.05880.050*
C60.7307 (4)0.7383 (3)0.08214 (6)0.0352 (5)
H60.87470.73550.09620.042*
C70.4046 (8)0.4355 (4)0.01540 (8)0.0698 (9)
H7A0.26040.46400.00100.105*
H7B0.36670.33150.02960.105*
H7C0.54790.40930.00070.105*
C81.2390 (4)0.5424 (3)0.13142 (5)0.0305 (4)
H81.36370.52580.11450.037*
C91.0008 (4)0.6656 (3)0.17226 (5)0.0312 (4)
H90.93490.74960.18800.037*
C100.9162 (4)0.4935 (2)0.16686 (5)0.0240 (4)
C110.7122 (4)0.3892 (2)0.18479 (5)0.0242 (4)
H11A0.60390.33300.16730.029*
H11B0.60890.47190.19850.029*
C120.8209 (3)0.2411 (2)0.20905 (4)0.0190 (3)
H120.94730.16930.19630.023*
C130.9463 (3)0.3308 (2)0.24112 (5)0.0217 (4)
N11.0671 (3)0.4207 (2)0.14111 (4)0.0261 (3)
H11.05250.31320.13260.031*
N21.2021 (4)0.6914 (2)0.15002 (5)0.0325 (4)
H2A1.29040.78920.14840.039*
N30.6079 (3)0.1216 (2)0.22022 (4)0.0227 (3)
O10.4968 (4)1.2199 (2)0.10150 (5)0.0513 (5)
O20.8939 (3)1.0777 (2)0.11806 (5)0.0564 (5)
O30.5067 (4)0.9933 (2)0.14701 (4)0.0448 (4)
O41.1834 (3)0.3507 (2)0.23929 (4)0.0344 (4)
O50.8051 (3)0.3822 (2)0.26480 (4)0.0340 (3)
S10.62131 (10)1.05973 (6)0.114496 (13)0.02896 (12)
H3D0.534 (4)0.064 (3)0.2015 (6)0.027 (5)*
H3B0.673 (5)0.024 (4)0.2341 (7)0.037 (7)*
H3C0.487 (5)0.173 (4)0.2300 (6)0.036 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0301 (10)0.0217 (8)0.0283 (8)0.0061 (8)0.0041 (8)0.0026 (7)
C20.0372 (12)0.0342 (10)0.0421 (11)0.0033 (9)0.0061 (10)0.0038 (9)
C30.0450 (14)0.0514 (14)0.0372 (11)0.0084 (12)0.0092 (10)0.0068 (10)
C40.0515 (14)0.0352 (12)0.0363 (11)0.0120 (10)0.0078 (10)0.0102 (9)
C50.0457 (13)0.0272 (10)0.0509 (13)0.0019 (9)0.0099 (11)0.0077 (9)
C60.0312 (11)0.0306 (10)0.0437 (11)0.0002 (9)0.0012 (9)0.0043 (9)
C70.095 (3)0.0578 (17)0.0570 (16)0.0227 (19)0.0094 (17)0.0293 (14)
C80.0280 (10)0.0273 (9)0.0361 (10)0.0045 (9)0.0013 (8)0.0055 (8)
C90.0449 (12)0.0186 (8)0.0302 (10)0.0051 (8)0.0014 (9)0.0016 (7)
C100.0275 (9)0.0202 (8)0.0244 (8)0.0024 (7)0.0016 (8)0.0021 (6)
C110.0245 (9)0.0210 (8)0.0273 (8)0.0011 (7)0.0025 (7)0.0032 (7)
C120.0161 (8)0.0176 (7)0.0234 (8)0.0030 (6)0.0006 (6)0.0000 (6)
C130.0214 (9)0.0139 (7)0.0300 (9)0.0024 (6)0.0055 (7)0.0004 (6)
N10.0307 (9)0.0176 (7)0.0301 (7)0.0037 (6)0.0013 (6)0.0002 (6)
N20.0392 (10)0.0221 (8)0.0362 (9)0.0119 (7)0.0043 (8)0.0049 (7)
N30.0188 (7)0.0202 (7)0.0290 (8)0.0031 (7)0.0001 (7)0.0008 (6)
O10.0761 (14)0.0229 (7)0.0550 (10)0.0084 (8)0.0015 (10)0.0024 (7)
O20.0336 (9)0.0439 (9)0.0917 (14)0.0153 (8)0.0063 (9)0.0324 (10)
O30.0614 (11)0.0379 (8)0.0350 (8)0.0244 (8)0.0022 (8)0.0085 (6)
O40.0192 (7)0.0312 (7)0.0529 (9)0.0031 (6)0.0052 (6)0.0140 (6)
O50.0322 (8)0.0386 (8)0.0312 (7)0.0045 (6)0.0018 (6)0.0095 (6)
S10.0314 (3)0.0191 (2)0.0364 (2)0.00777 (18)0.0038 (2)0.00459 (18)
Geometric parameters (Å, º) top
C1—C61.382 (3)C9—H90.9300
C1—C21.386 (3)C10—N11.374 (2)
C1—S11.7671 (19)C10—C111.488 (3)
C2—C31.391 (3)C11—C121.542 (2)
C2—H20.9300C11—H11A0.9700
C3—C41.387 (4)C11—H11B0.9700
C3—H30.9300C12—N31.490 (2)
C4—C51.381 (4)C12—C131.541 (2)
C4—C71.512 (3)C12—H120.9800
C5—C61.393 (3)C13—O51.231 (2)
C5—H50.9300C13—O41.260 (2)
C6—H60.9300N1—H10.8600
C7—H7A0.9600N2—H2A0.8600
C7—H7B0.9600N3—H3D0.92 (2)
C7—H7C0.9600N3—H3B0.96 (3)
C8—N21.322 (3)N3—H3C0.83 (3)
C8—N11.327 (2)O1—S11.4391 (17)
C8—H80.9300O2—S11.4490 (18)
C9—C101.360 (3)O3—S11.4652 (17)
C9—N21.372 (3)
C6—C1—C2120.04 (18)C10—C11—C12111.95 (15)
C6—C1—S1119.94 (16)C10—C11—H11A109.2
C2—C1—S1119.85 (16)C12—C11—H11A109.2
C1—C2—C3119.0 (2)C10—C11—H11B109.2
C1—C2—H2120.5C12—C11—H11B109.2
C3—C2—H2120.5H11A—C11—H11B107.9
C4—C3—C2121.8 (2)N3—C12—C13110.43 (14)
C4—C3—H3119.1N3—C12—C11108.10 (14)
C2—C3—H3119.1C13—C12—C11109.47 (14)
C5—C4—C3118.3 (2)N3—C12—H12109.6
C5—C4—C7120.5 (2)C13—C12—H12109.6
C3—C4—C7121.1 (3)C11—C12—H12109.6
C4—C5—C6120.8 (2)O5—C13—O4127.17 (18)
C4—C5—H5119.6O5—C13—C12117.22 (16)
C6—C5—H5119.6O4—C13—C12115.52 (17)
C1—C6—C5120.1 (2)C8—N1—C10109.33 (16)
C1—C6—H6119.9C8—N1—H1125.3
C5—C6—H6119.9C10—N1—H1125.3
C4—C7—H7A109.5C8—N2—C9109.36 (17)
C4—C7—H7B109.5C8—N2—H2A125.3
H7A—C7—H7B109.5C9—N2—H2A125.3
C4—C7—H7C109.5C12—N3—H3D111.8 (14)
H7A—C7—H7C109.5C12—N3—H3B109.6 (15)
H7B—C7—H7C109.5H3D—N3—H3B104 (2)
N2—C8—N1108.10 (18)C12—N3—H3C115.8 (18)
N2—C8—H8125.9H3D—N3—H3C104 (2)
N1—C8—H8125.9H3B—N3—H3C112 (2)
C10—C9—N2106.77 (19)O1—S1—O2114.19 (12)
C10—C9—H9126.6O1—S1—O3112.24 (12)
N2—C9—H9126.6O2—S1—O3111.07 (12)
C9—C10—N1106.42 (17)O1—S1—C1107.04 (10)
C9—C10—C11130.43 (19)O2—S1—C1106.56 (10)
N1—C10—C11123.10 (16)O3—S1—C1105.06 (9)
C6—C1—C2—C30.0 (3)N3—C12—C13—O539.4 (2)
S1—C1—C2—C3175.30 (18)C11—C12—C13—O579.5 (2)
C1—C2—C3—C40.9 (4)N3—C12—C13—O4143.72 (16)
C2—C3—C4—C51.4 (4)C11—C12—C13—O497.38 (19)
C2—C3—C4—C7177.3 (2)N2—C8—N1—C100.4 (2)
C3—C4—C5—C61.0 (4)C9—C10—N1—C80.7 (2)
C7—C4—C5—C6177.7 (2)C11—C10—N1—C8176.84 (17)
C2—C1—C6—C50.3 (3)N1—C8—N2—C90.1 (2)
S1—C1—C6—C5174.95 (17)C10—C9—N2—C80.6 (2)
C4—C5—C6—C10.2 (3)C6—C1—S1—O1157.65 (17)
N2—C9—C10—N10.8 (2)C2—C1—S1—O127.0 (2)
N2—C9—C10—C11176.54 (19)C6—C1—S1—O235.1 (2)
C9—C10—C11—C12106.9 (2)C2—C1—S1—O2149.61 (18)
N1—C10—C11—C1270.1 (2)C6—C1—S1—O382.85 (19)
C10—C11—C12—N3169.02 (15)C2—C1—S1—O392.46 (19)
C10—C11—C12—C1370.64 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids the C1–C6 and N1/N2/C8–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.002.828 (2)160
N2—H2A···O3ii0.861.892.746 (2)175
N3—H3B···O4iii0.96 (3)1.80 (3)2.755 (2)176 (2)
N3—H3C···O4iv0.83 (3)2.10 (3)2.896 (2)161 (2)
N3—H3D···O3i0.92 (2)2.15 (2)3.000 (2)153.4 (19)
C8—H8···O1v0.932.412.967 (3)118
C9—H9···O5vi0.932.473.062 (3)122
C6—H6···Cg20.932.733.515 (2)143
C8—H8···Cg1ii0.932.713.394 (2)131
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+2, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y1, z; (vi) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids the C1–C6 and N1/N2/C8–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.002.828 (2)160
N2—H2A···O3ii0.861.892.746 (2)175
N3—H3B···O4iii0.96 (3)1.80 (3)2.755 (2)176 (2)
N3—H3C···O4iv0.83 (3)2.10 (3)2.896 (2)161 (2)
N3—H3D···O3i0.92 (2)2.15 (2)3.000 (2)153.4 (19)
C8—H8···O1v0.932.412.967 (3)118
C9—H9···O5vi0.932.473.062 (3)122
C6—H6···Cg20.932.733.515 (2)143
C8—H8···Cg1ii0.932.713.394 (2)131
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x+2, y1/2, z+1/2; (iv) x1, y, z; (v) x+1, y1, z; (vi) x+2, y+1/2, z+1/2.
Acknowledgements top

The authors thank the TBI X–ray facility, CAS in Crystallography and Biophysics, University of Madras, India for data collection. TS and DV thank the UGC (SAP-CAS) is acknowledged for the departmental facilities. TS also thanks the DST Inspire program for financial assistance.

references
References top

Andra, K. K., Bullinger, J. C., Bann, J. G. & Eichhorn, D. M. (2010). Acta Cryst. E66, o2713.

Biradha, K. & Mahata, G. (2005). Cryst. Growth Des. 5, 49–51.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Koshima, H., Miyamoto, H., Yagi, I. & Uosaki, K. (2004). Cryst. Growth Des. 4,807–811.

Madden, J. J., McGandy, E. L. & Seeman, N. C. (1972). Acta Cryst. B28, 2377–2382.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sivakumar, P. K., Krishnakumar, M., Kanagadurai, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3059.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.