supplementary materials


cv5413 scheme

Acta Cryst. (2013). E69, m364-m365    [ doi:10.1107/S1600536813014657 ]

Dichloridobis(pyridine-2-selenolato-[kappa]2N,Se)tin(IV)

G. Z. Mammadova, S. R. Ismaylova, Z. V. Matsulevich, V. K. Osmanov, A. V. Borisov and V. N. Khrustalev

Abstract top

The title compound, [SnCl2(C5H4NSe)2], is the product of a reaction of 2,2'-dipyridyl diselenide with tin tetrachloride. The molecule is located about a twofold rotation axis. The coordination environment of the SnIV atom is a distorted octahedron, with two bidentate 2-pyridineselenolate ligands inclined to each other at an angle of 83.96 (7)°. The two Sn-Cl and two Sn-N bonds are in cis configurations, while the two Sn-Se bonds of 2.5917 (3) Å are in a trans configuration, with an Se-Sn-Se angle of 157.988 (15)°. In the crystal, [pi]-[pi] interactions between the pyridine rings [centroid-to-centroid distance of 3.758 (3) Å] and weak intermolecular C-H...Cl hydrogen bonds link the molecules into chains along the c axis.

Comment top

The coordination chemistry of 2,2'-dipyridyl dichalcogenides to metal ions is a topic of current research interest owing to the application of these complexes as potential precursors for the generation of semiconducting materials (Kadooka et al., 1976a,b; Cheng et al., 1996; Kienitz et al., 1996; Bell et al., 2000; Kita et al., 2001; Kedarnath et al., 2009).

This article describes dichloridobis(pyridine-2-selenolato-k2N,Se)-tin(IV), C10H8Cl2N2Se2Sn (I), which was obtained by the reaction of 2,2'-dipyridyl diselenide with tin tetrachloride (Fig. 1). Compound I is isostructural with the monoclinic modification of the related thio-analogue reported by us very recently (Ismaylova et al., 2012). For the synthesis and structure of the triclinic modification of this thio-analogue, see: Masaki & Matsunami (1976) and Masaki et al. (1978).

The molecule of I possesses overall intrinsic C2 symmetry and occupies a special position on the twofold axis. The Sn atom adopts a distorted octahedral geometry, with the two bidentate 2-pyridineselenolate ligands forming two planar four-membered chelate rings (Fig. 2). The two Sn—Cl, two Sn—N and two Sn—Se bonds are in cis, cis and trans configurations, respectively. The lengths of the two covalent Sn—Se bonds [2.5917 (3) Å] are in good accordance with those in the previously studied analogous octahedral tin(IV) complexes (Labisbal et al., 1993; Chopra et al., 1996).

In the crystal, ππ interactions between the pyridine rings [centroid-to-centroid distance of 3.758 (3) Å] and weak intermolecular C4—H4···Cl1 hydrogen bonds (Fig. 3, Table 1) link the molecules of I into chains along the c axis. The crystal packing of the chains is stacking along the a axis.

Related literature top

For metal complexes with 2,2'-dipyridyl dichalcogenides, see: Kadooka et al. (1976a,b); Cheng et al. (1996); Kienitz et al. (1996); Bell et al. (2000); Kita et al. (2001); Kedarnath et al. (2009). For syntheses and structures of related tin(IV) compounds, see: Masaki & Matsunami (1976); Masaki et al. (1978); Labisbal et al. (1993); Chopra et al. (1996); Ismaylova et al. (2012).

Experimental top

A solution of SnCl4 (0.042 g, 0.16 mmol) in CH2Cl2 (25 ml) was added to a solution of 2,2'-dipyridyl diselenide (0.10 g, 0.32 mmol) in CH2Cl2 (25 ml) with stirring at room temperature. After 48 h, the reaction mixture was concentrated in vacuo to a volume of about 15–20 ml, and the powder of compound I was separated by filtration. The solid was re-crystallized from CH2Cl2 to give I as yellow crystals. Yield is 25%. m.p. = 456–458 K. 1H NMR (DMSO-d6, 300 MHz, 302 K): δ = 8.53 (d, 2H, H6, J = 4.4 Hz), 7.80 (t, 2H, H4, J = 7.3 Hz), 7.64 (d, 2H, H3, J = 7.3 Hz), 7.35 (dd, 2H, H5, J = 7.3 Hz, J = 4.4 Hz). Analysis, calculated for C10H8Cl2N2Se2Sn: C 23.72, H 1.57, N 5.51%; found: C 23.84, H 1.60, N 5.56%.

Refinement top

The H atoms were placed in calculated positions with C—H = 0.95 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction of 2,2'-dipyridyl diselenide with tin tetrachloride.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Symmetry code: (i) -x + 1, -y + 1, -z.
[Figure 3] Fig. 3. A portion of the crystal packing of I, demonstrating the hydrogen-bonded chains along the c axis. Dashed lines indicate the intermolecular C—H···Cl hydrogen bonds.
Dichloridobis(pyridine-2-selenolato-κ2N,Se)tin(IV) top
Crystal data top
[SnCl2(C5H4NSe)2]F(000) = 936
Mr = 503.69Dx = 2.438 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4192 reflections
a = 6.5174 (4) Åθ = 2.5–32.4°
b = 13.1221 (8) ŵ = 7.53 mm1
c = 16.3066 (9) ÅT = 100 K
β = 100.194 (1)°Prism, yellow
V = 1372.56 (14) Å30.18 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2464 independent reflections
Radiation source: fine-focus sealed tube2149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 32.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.344, Tmax = 0.398k = 1919
9918 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
2464 reflections(Δ/σ)max = 0.001
78 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[SnCl2(C5H4NSe)2]V = 1372.56 (14) Å3
Mr = 503.69Z = 4
Monoclinic, C2/cMo Kα radiation
a = 6.5174 (4) ŵ = 7.53 mm1
b = 13.1221 (8) ÅT = 100 K
c = 16.3066 (9) Å0.18 × 0.15 × 0.15 mm
β = 100.194 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2464 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2149 reflections with I > 2σ(I)
Tmin = 0.344, Tmax = 0.398Rint = 0.031
9918 measured reflectionsθmax = 32.5°
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.79 e Å3
S = 1.00Δρmin = 0.87 e Å3
2464 reflectionsAbsolute structure: ?
78 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.622617 (17)0.25000.01852 (6)
Se10.16999 (4)0.584912 (19)0.140130 (15)0.02190 (7)
Cl10.67676 (9)0.74412 (5)0.17723 (4)0.02544 (12)
N10.5494 (3)0.49464 (16)0.16204 (12)0.0204 (4)
C20.3618 (4)0.48906 (18)0.11081 (14)0.0209 (4)
C30.3249 (4)0.41919 (19)0.04601 (16)0.0237 (5)
H30.19330.41580.01010.028*
C40.4867 (4)0.35439 (19)0.03530 (16)0.0263 (5)
H40.46630.30600.00870.032*
C50.6780 (4)0.35981 (19)0.08840 (17)0.0257 (5)
H50.78850.31530.08140.031*
C60.7045 (4)0.4308 (2)0.15137 (16)0.0235 (5)
H60.83480.43500.18810.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01985 (11)0.01864 (11)0.01647 (10)0.0000.00155 (8)0.000
Se10.01990 (12)0.02333 (13)0.02113 (12)0.00098 (8)0.00005 (9)0.00003 (8)
Cl10.0290 (3)0.0255 (3)0.0217 (3)0.0056 (2)0.0040 (2)0.0025 (2)
N10.0221 (9)0.0210 (9)0.0176 (9)0.0009 (7)0.0018 (7)0.0003 (7)
C20.0218 (10)0.0201 (10)0.0203 (10)0.0017 (8)0.0026 (8)0.0022 (8)
C30.0270 (11)0.0237 (11)0.0191 (11)0.0029 (9)0.0001 (9)0.0003 (8)
C40.0353 (13)0.0206 (11)0.0231 (11)0.0035 (9)0.0055 (10)0.0029 (9)
C50.0317 (12)0.0215 (11)0.0247 (12)0.0035 (9)0.0074 (10)0.0004 (9)
C60.0245 (11)0.0239 (11)0.0227 (11)0.0007 (9)0.0054 (9)0.0033 (9)
Geometric parameters (Å, º) top
Sn1—N12.268 (2)C3—C41.389 (4)
Sn1—Cl12.4002 (6)C3—H30.9500
Sn1—Se12.5917 (3)C4—C51.388 (4)
Se1—C21.893 (2)C4—H40.9500
N1—C61.348 (3)C5—C61.375 (4)
N1—C21.355 (3)C5—H50.9500
C2—C31.388 (3)C6—H60.9500
N1—Sn1—N1i84.47 (10)N1—C2—Se1111.86 (17)
N1—Sn1—Cl192.57 (5)C3—C2—Se1126.74 (19)
N1i—Sn1—Cl1159.83 (5)C2—C3—C4117.9 (2)
Cl1—Sn1—Cl1i96.75 (3)C2—C3—H3121.1
N1—Sn1—Se167.34 (5)C4—C3—H3121.1
N1i—Sn1—Se195.89 (5)C5—C4—C3120.5 (2)
Cl1—Sn1—Se1101.376 (16)C5—C4—H4119.7
Cl1i—Sn1—Se193.231 (16)C3—C4—H4119.7
N1—Sn1—Se1i95.89 (5)C6—C5—C4118.8 (2)
Se1—Sn1—Se1i157.988 (15)C6—C5—H5120.6
C2—Se1—Sn178.30 (7)C4—C5—H5120.6
C6—N1—C2120.2 (2)N1—C6—C5121.3 (2)
C6—N1—Sn1137.34 (17)N1—C6—H6119.4
C2—N1—Sn1102.49 (15)C5—C6—H6119.4
N1—C2—C3121.4 (2)
N1—Sn1—Se1—C20.40 (9)Se1i—Sn1—N1—C2165.79 (14)
N1i—Sn1—Se1—C281.89 (9)C6—N1—C2—C30.8 (3)
Cl1—Sn1—Se1—C287.63 (7)Sn1—N1—C2—C3179.55 (19)
Cl1i—Sn1—Se1—C2174.81 (7)C6—N1—C2—Se1178.91 (17)
Se1i—Sn1—Se1—C243.00 (7)Sn1—N1—C2—Se10.77 (17)
N1i—Sn1—N1—C680.3 (2)Sn1—Se1—C2—N10.67 (15)
Cl1—Sn1—N1—C679.7 (2)Sn1—Se1—C2—C3179.7 (2)
Cl1i—Sn1—N1—C6162.64 (17)N1—C2—C3—C40.3 (4)
Se1—Sn1—N1—C6179.0 (3)Se1—C2—C3—C4179.38 (18)
Se1i—Sn1—N1—C613.8 (2)C2—C3—C4—C50.3 (4)
N1i—Sn1—N1—C299.31 (15)C3—C4—C5—C60.4 (4)
Cl1—Sn1—N1—C2100.69 (14)C2—N1—C6—C50.7 (4)
Cl1i—Sn1—N1—C216.9 (3)Sn1—N1—C6—C5179.76 (18)
Se1—Sn1—N1—C20.56 (12)C4—C5—C6—N10.1 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1ii0.952.823.675 (3)151
Symmetry code: (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[SnCl2(C5H4NSe)2]
Mr503.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)6.5174 (4), 13.1221 (8), 16.3066 (9)
β (°) 100.194 (1)
V3)1372.56 (14)
Z4
Radiation typeMo Kα
µ (mm1)7.53
Crystal size (mm)0.18 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.344, 0.398
No. of measured, independent and
observed [I > 2σ(I)] reflections
9918, 2464, 2149
Rint0.031
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.00
No. of reflections2464
No. of parameters78
No. of restraints0
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.87

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.952.823.675 (3)151
Symmetry code: (i) x+1, y+1, z.
Acknowledgements top

The authors thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

references
References top

Bell, N. A., Gelbrich, T., Hursthouse, M. B., Mark, E., Light, M. E. & Wilson, A. (2000). Polyhedron, 19, 2539–2546.

Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Cheng, Y., Emge, T. J. & Brennan, J. G. (1996). Inorg. Chem. 35, 342–346.

Chopra, N., Damude, L. C., Dean, P. A. W. & Vittal, J. J. (1996). Can. J. Chem. 74, 2095–2105.

Ismaylova, S. R., Matsulevich, Z. V., Borisova, G. N., Borisov, A. V. & Khrustalev, V. N. (2012). Acta Cryst. E68, m875–m876.

Kadooka, M. M., Warner, L. G. & Seff, K. (1976a). J. Am. Chem. Soc. 98, 7569–7578.

Kadooka, M. M., Warner, L. G. & Seff, K. (1976b). Inorg. Chem. 15, 812–816.

Kedarnath, G., Jain, V. K., Wadawale, A. & Dey, G. K. (2009). Dalton Trans. 39, 8378–8385.

Kienitz, C. O., Thöne, C. & Jones, P. G. (1996). Inorg. Chem. 35, 3990–3997.

Kita, M., Tamai, H., Ueta, F., Fuyuhiro, A., Yamanari, K., Nakajima, K., Kojima, M., Murata, K. & Yamashita, S. (2001). Inorg. Chim. Acta, 314, 139–146.

Labisbal, E., Romero, J., Duran, M. L., Garcia-Vazquez, J. A., Sousa, A., Russo, U., Pritchard, R. & Renson, M. (1993). J. Chem. Soc. Dalton Trans. pp. 755–758.

Masaki, M. & Matsunami, S. (1976). Bull. Chem. Soc. Jpn, 49, 3274–3279.

Masaki, M., Matsunami, S. & Ueda, H. (1978). Bull. Chem. Soc. Jpn, 51, 3298–3301.

Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.