organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Meth­­oxy­phen­yl)-6a-nitro-6,6a,6b,7,8,9,10,12a-octa­hydro­spiro­[chromeno[3,4-a]indolizine-12,3′-indolin]-2′-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 23 May 2013; accepted 3 June 2013; online 8 June 2013)

In the title compound, C29H27N3O5, the hydropyran ring adopts an envelope conformation with the methine C atom bearing the para-meth­oxy­benzene ring as the flap. The central pyrrolidine ring has a twist conformation on the N—C bond involving the spiro C atom. The piperidine ring adopts a chair conformation. An intra­molecular C—H⋯O contact closes an S(7) ring. In the crystal, inversion dimers linked by C—H⋯O inter­actions generate R22(18) loops and N—H⋯O hydrogen bonds connect the dimers into [100] chains.

Related literature

For a related structure and background to 4H-chromene derivatives, see: Devi et al. (2013[Devi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o993.]).

[Scheme 1]

Experimental

Crystal data
  • C29H27N3O5

  • Mr = 497.54

  • Triclinic, [P \overline 1]

  • a = 9.3438 (3) Å

  • b = 11.3626 (4) Å

  • c = 13.5713 (4) Å

  • α = 68.687 (1)°

  • β = 88.284 (1)°

  • γ = 66.757 (1)°

  • V = 1222.49 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 17765 measured reflections

  • 4964 independent reflections

  • 4116 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.03

  • 4964 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.86 2.24 3.085 (2) 167
C14—H14⋯O5ii 0.93 2.54 3.358 (2) 147
C8—H8⋯O5 0.98 2.40 3.234 (2) 143
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of 4H-chromene derivatives (Devi et al., 2013), we have synthesized the title compound (Fig. 1) and report herein its crystal structure.

The hydropyrrolidine ring adopts an envelope conformation, the piperidine ring adopts a chair conformation and the pyran ring adopts an envelope conformation. The pyrrolidine ring (N2/C9/C10/C17/C22) makes a dihedral angle of 86.78 (8)° with the other pyrrolidine ring (N3/C22/C23/C28/C29) which shows that they are almost orthogonal to each other. The pyrrolidine ring makes a dihedral angle of 29.65 (8)° with the pyran ring (O2/C8-C11/C16), it makes a dihedral angle of 8.88 (9)° with the piperidine ring (N2/C17-C21).

The other pyrrolidine ring (N3/C22/C23/C28/C29) makes a dihedral angle of 71.63 (8)° with the pyran ring, it makes a dihedral angle of 86.84 (8)° with the piperidine ring which shows that they are almost at right angles to each other. The dihedral angle between the pyran ring and the piperidine ring is 30.34 (8)° . The oxygen atom O5 attached with pyrrolidine ring deviates by -0.0200 (1)Å. The nitrogroup attached with the pyrrolidine ring makes a diherdal angle of 88.83 (1)° which shows it is in orthogonal orientation . The crystal packing features N—H···O, C—H···O hydrogen bonds and intramolecular C—H···O hydrogen bonds.

Related literature top

For a related structure and background to 4H-chromene derivatives, see: Devi et al. (2013).

Experimental top

To a solution of isatin (1equiv) and piperidine-2-carboxylic acid (1.4 equiv) in dry toluene, was added 2-(4-methoxyphenyl)-3-nitro-2H-chromene (1equiv) under nitrogen atmosphere. The reaction mixture was refluxed for 24h in Dean-Stark apparatus to give the cycloadducts. After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure. The crude product was extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulphate and concentrated in vacuo. Then the crude product was purified by column chromatography using hexane/EtOAc (7:3) as eluent. Colourless blocks were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

The hydrogen atoms were placed in calculated positions and treated as riding atoms: C—H = 0.93 Å to 0.97 Å, and N—H =0.86 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down b axis. H-atoms not involved in H-bonds have been excluded for clarity.
6-(4-Methoxyphenyl)-6a-nitro-6,6a,6b,7,8,9,10,12a-octahydrospiro[chromeno[3,4-a]indolizine-12,3'-indolin]-2'-one top
Crystal data top
C29H27N3O5Z = 2
Mr = 497.54F(000) = 524
Triclinic, P1Dx = 1.352 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3438 (3) ÅCell parameters from 4964 reflections
b = 11.3626 (4) Åθ = 1.6–26.4°
c = 13.5713 (4) ŵ = 0.09 mm1
α = 68.687 (1)°T = 293 K
β = 88.284 (1)°Block, colourless
γ = 66.757 (1)°0.30 × 0.25 × 0.20 mm
V = 1222.49 (7) Å3
Data collection top
Bruker SMART APEXII
diffractometer
4964 independent reflections
Radiation source: fine-focus sealed tube4116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.973, Tmax = 0.982k = 1414
17765 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.279P]
where P = (Fo2 + 2Fc2)/3
4964 reflections(Δ/σ)max < 0.001
335 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C29H27N3O5γ = 66.757 (1)°
Mr = 497.54V = 1222.49 (7) Å3
Triclinic, P1Z = 2
a = 9.3438 (3) ÅMo Kα radiation
b = 11.3626 (4) ŵ = 0.09 mm1
c = 13.5713 (4) ÅT = 293 K
α = 68.687 (1)°0.30 × 0.25 × 0.20 mm
β = 88.284 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
4964 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4116 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.027
17765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
4964 reflectionsΔρmin = 0.23 e Å3
335 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2341 (3)1.0337 (2)0.38130 (16)0.0993 (8)
H1A0.31061.07250.36900.149*
H1B0.13361.10410.34340.149*
H1C0.26540.95920.35640.149*
C20.3493 (2)0.87030 (17)0.55807 (14)0.0637 (5)
C30.4983 (2)0.82230 (18)0.53115 (14)0.0682 (5)
H30.51920.86620.46340.082*
C40.6175 (2)0.70767 (16)0.60584 (13)0.0592 (4)
H40.71910.67780.58830.071*
C50.58892 (17)0.63663 (15)0.70583 (11)0.0455 (3)
C60.43845 (19)0.68872 (17)0.73146 (13)0.0545 (4)
H60.41650.64460.79880.065*
C70.3206 (2)0.80484 (19)0.65897 (14)0.0650 (5)
H70.22070.83930.67830.078*
C80.72252 (16)0.51114 (14)0.78326 (10)0.0408 (3)
H80.81510.53250.77240.049*
C90.77152 (15)0.36977 (13)0.77426 (10)0.0367 (3)
C100.91910 (15)0.26057 (13)0.85468 (10)0.0366 (3)
H100.90140.17580.88650.044*
C110.94489 (16)0.29989 (14)0.94587 (10)0.0397 (3)
C121.07826 (18)0.21855 (17)1.02158 (11)0.0507 (4)
H121.15860.14461.01170.061*
C131.0931 (2)0.2457 (2)1.11079 (12)0.0600 (4)
H131.18430.19201.15950.072*
C140.9731 (2)0.35255 (19)1.12802 (12)0.0594 (4)
H140.98170.36851.18960.071*
C150.8405 (2)0.43555 (17)1.05410 (12)0.0536 (4)
H150.75980.50811.06520.064*
C160.82846 (17)0.40991 (15)0.96263 (11)0.0434 (3)
C170.81967 (15)0.37337 (14)0.66400 (10)0.0383 (3)
H170.84710.45280.63210.046*
C180.70480 (18)0.38308 (17)0.58150 (11)0.0499 (4)
H18A0.60860.46610.56620.060*
H18B0.67900.30320.60820.060*
C190.7827 (2)0.38777 (19)0.48083 (12)0.0598 (4)
H19A0.71470.38710.42860.072*
H19B0.79750.47310.45050.072*
C200.9400 (2)0.26524 (19)0.50478 (13)0.0596 (4)
H20A0.99140.27580.44090.071*
H20B0.92320.18110.52440.071*
C211.04685 (18)0.25141 (17)0.59464 (11)0.0491 (3)
H21A1.14190.16680.61250.059*
H21B1.07640.32920.57180.059*
C221.05240 (15)0.22993 (13)0.78451 (10)0.0366 (3)
C231.18780 (16)0.08993 (14)0.83232 (10)0.0392 (3)
C241.19077 (18)0.04125 (15)0.87141 (11)0.0470 (3)
H241.09850.05380.86940.056*
C251.3337 (2)0.15412 (16)0.91379 (13)0.0548 (4)
H251.33720.24320.94160.066*
C261.4710 (2)0.13609 (17)0.91531 (14)0.0615 (4)
H261.56600.21330.94310.074*
C271.46969 (18)0.00471 (17)0.87613 (14)0.0586 (4)
H271.56210.00770.87730.070*
C281.32679 (16)0.10650 (15)0.83550 (11)0.0438 (3)
C291.13735 (15)0.32878 (14)0.76355 (10)0.0389 (3)
N10.64091 (14)0.31789 (13)0.79590 (9)0.0446 (3)
N20.96439 (13)0.24825 (11)0.68832 (8)0.0386 (3)
N31.29296 (14)0.24880 (12)0.79328 (10)0.0497 (3)
H3A1.36320.28130.78710.060*
O10.22311 (19)0.98242 (14)0.49209 (11)0.0914 (5)
O20.69437 (12)0.49773 (11)0.89032 (8)0.0493 (3)
O30.50728 (14)0.39968 (14)0.78486 (14)0.0836 (4)
O40.67564 (14)0.19579 (13)0.81793 (11)0.0701 (4)
O51.07592 (12)0.45448 (10)0.72573 (8)0.0485 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.128 (2)0.0676 (13)0.0613 (12)0.0123 (13)0.0229 (13)0.0090 (10)
C20.0710 (11)0.0486 (9)0.0556 (10)0.0075 (8)0.0074 (8)0.0206 (7)
C30.0848 (13)0.0505 (9)0.0519 (9)0.0195 (9)0.0094 (9)0.0099 (7)
C40.0602 (10)0.0478 (8)0.0600 (10)0.0199 (7)0.0149 (8)0.0135 (7)
C50.0483 (8)0.0446 (7)0.0462 (8)0.0193 (6)0.0045 (6)0.0199 (6)
C60.0531 (9)0.0602 (9)0.0457 (8)0.0154 (7)0.0068 (7)0.0241 (7)
C70.0541 (10)0.0673 (11)0.0596 (10)0.0054 (8)0.0015 (8)0.0304 (8)
C80.0400 (7)0.0477 (7)0.0402 (7)0.0220 (6)0.0063 (6)0.0187 (6)
C90.0339 (6)0.0453 (7)0.0378 (7)0.0239 (6)0.0051 (5)0.0151 (5)
C100.0362 (7)0.0427 (7)0.0359 (6)0.0236 (6)0.0053 (5)0.0125 (5)
C110.0420 (7)0.0513 (8)0.0331 (6)0.0291 (6)0.0071 (5)0.0134 (6)
C120.0474 (8)0.0644 (9)0.0392 (7)0.0252 (7)0.0042 (6)0.0161 (7)
C130.0591 (10)0.0822 (12)0.0394 (8)0.0333 (9)0.0015 (7)0.0187 (8)
C140.0792 (12)0.0772 (11)0.0373 (8)0.0457 (10)0.0069 (8)0.0236 (7)
C150.0669 (10)0.0598 (9)0.0446 (8)0.0330 (8)0.0120 (7)0.0241 (7)
C160.0484 (8)0.0513 (8)0.0378 (7)0.0288 (7)0.0068 (6)0.0158 (6)
C170.0380 (7)0.0444 (7)0.0362 (6)0.0213 (6)0.0051 (5)0.0146 (5)
C180.0468 (8)0.0604 (9)0.0435 (8)0.0216 (7)0.0022 (6)0.0209 (7)
C190.0664 (11)0.0727 (11)0.0398 (8)0.0267 (9)0.0001 (7)0.0228 (7)
C200.0666 (11)0.0744 (11)0.0442 (8)0.0288 (9)0.0105 (7)0.0301 (8)
C210.0486 (8)0.0600 (9)0.0450 (8)0.0253 (7)0.0138 (6)0.0243 (7)
C220.0360 (7)0.0426 (7)0.0376 (6)0.0234 (6)0.0056 (5)0.0144 (5)
C230.0392 (7)0.0450 (7)0.0379 (7)0.0217 (6)0.0059 (5)0.0160 (5)
C240.0510 (8)0.0494 (8)0.0487 (8)0.0293 (7)0.0091 (6)0.0182 (6)
C250.0640 (10)0.0435 (8)0.0549 (9)0.0243 (7)0.0090 (7)0.0145 (7)
C260.0498 (9)0.0505 (9)0.0681 (11)0.0124 (7)0.0006 (8)0.0138 (8)
C270.0394 (8)0.0575 (9)0.0737 (11)0.0205 (7)0.0006 (7)0.0184 (8)
C280.0390 (7)0.0470 (8)0.0484 (8)0.0220 (6)0.0055 (6)0.0169 (6)
C290.0387 (7)0.0455 (7)0.0396 (7)0.0244 (6)0.0089 (5)0.0164 (6)
N10.0391 (6)0.0572 (7)0.0465 (6)0.0290 (6)0.0070 (5)0.0194 (5)
N20.0374 (6)0.0472 (6)0.0363 (6)0.0217 (5)0.0050 (5)0.0167 (5)
N30.0365 (6)0.0502 (7)0.0676 (8)0.0271 (5)0.0056 (6)0.0181 (6)
O10.0928 (11)0.0680 (8)0.0653 (8)0.0075 (7)0.0170 (7)0.0163 (7)
O20.0470 (6)0.0582 (6)0.0428 (5)0.0181 (5)0.0061 (4)0.0235 (5)
O30.0361 (6)0.0715 (8)0.1459 (13)0.0282 (6)0.0131 (7)0.0380 (8)
O40.0591 (7)0.0610 (7)0.1013 (10)0.0415 (6)0.0089 (7)0.0243 (7)
O50.0477 (6)0.0437 (6)0.0584 (6)0.0260 (5)0.0113 (5)0.0166 (5)
Geometric parameters (Å, º) top
C1—O11.418 (3)C16—O21.3797 (17)
C1—H1A0.9600C17—N21.4584 (17)
C1—H1B0.9600C17—C181.5187 (18)
C1—H1C0.9600C17—H170.9800
C2—O11.365 (2)C18—C191.522 (2)
C2—C31.373 (3)C18—H18A0.9700
C2—C71.377 (3)C18—H18B0.9700
C3—C41.388 (2)C19—C201.513 (2)
C3—H30.9300C19—H19A0.9700
C4—C51.384 (2)C19—H19B0.9700
C4—H40.9300C20—C211.523 (2)
C5—C61.383 (2)C20—H20A0.9700
C5—C81.5101 (19)C20—H20B0.9700
C6—C71.377 (2)C21—N21.4634 (18)
C6—H60.9300C21—H21A0.9700
C7—H70.9300C21—H21B0.9700
C8—O21.4321 (16)C22—N21.4681 (16)
C8—C91.5374 (19)C22—C231.5041 (19)
C8—H80.9800C22—C291.5590 (17)
C9—N11.5309 (16)C23—C241.3774 (19)
C9—C171.5404 (18)C23—C281.3879 (19)
C9—C101.5452 (17)C24—C251.385 (2)
C10—C111.5146 (18)C24—H240.9300
C10—C221.5516 (18)C25—C261.378 (2)
C10—H100.9800C25—H250.9300
C11—C161.384 (2)C26—C271.386 (2)
C11—C121.3929 (19)C26—H260.9300
C12—C131.377 (2)C27—C281.375 (2)
C12—H120.9300C27—H270.9300
C13—C141.379 (3)C28—N31.4060 (18)
C13—H130.9300C29—O51.2126 (16)
C14—C151.376 (2)C29—N31.3522 (18)
C14—H140.9300N1—O31.1997 (17)
C15—C161.391 (2)N1—O41.2118 (16)
C15—H150.9300N3—H3A0.8600
O1—C1—H1A109.5C18—C17—H17107.3
O1—C1—H1B109.5C9—C17—H17107.3
H1A—C1—H1B109.5C17—C18—C19107.80 (12)
O1—C1—H1C109.5C17—C18—H18A110.1
H1A—C1—H1C109.5C19—C18—H18A110.1
H1B—C1—H1C109.5C17—C18—H18B110.1
O1—C2—C3124.88 (18)C19—C18—H18B110.1
O1—C2—C7115.56 (17)H18A—C18—H18B108.5
C3—C2—C7119.55 (16)C20—C19—C18111.05 (13)
C2—C3—C4119.46 (17)C20—C19—H19A109.4
C2—C3—H3120.3C18—C19—H19A109.4
C4—C3—H3120.3C20—C19—H19B109.4
C5—C4—C3121.68 (16)C18—C19—H19B109.4
C5—C4—H4119.2H19A—C19—H19B108.0
C3—C4—H4119.2C19—C20—C21112.21 (13)
C6—C5—C4117.54 (14)C19—C20—H20A109.2
C6—C5—C8122.97 (13)C21—C20—H20A109.2
C4—C5—C8119.43 (14)C19—C20—H20B109.2
C7—C6—C5121.09 (16)C21—C20—H20B109.2
C7—C6—H6119.5H20A—C20—H20B107.9
C5—C6—H6119.5N2—C21—C20109.45 (12)
C2—C7—C6120.55 (17)N2—C21—H21A109.8
C2—C7—H7119.7C20—C21—H21A109.8
C6—C7—H7119.7N2—C21—H21B109.8
O2—C8—C5109.55 (11)C20—C21—H21B109.8
O2—C8—C9109.49 (11)H21A—C21—H21B108.2
C5—C8—C9119.53 (11)N2—C22—C23112.92 (11)
O2—C8—H8105.8N2—C22—C10100.87 (10)
C5—C8—H8105.8C23—C22—C10115.71 (10)
C9—C8—H8105.8N2—C22—C29113.85 (10)
N1—C9—C8112.02 (11)C23—C22—C29101.58 (10)
N1—C9—C17108.63 (10)C10—C22—C29112.49 (10)
C8—C9—C17112.21 (11)C24—C23—C28119.79 (13)
N1—C9—C10108.43 (10)C24—C23—C22130.71 (12)
C8—C9—C10110.21 (10)C28—C23—C22109.49 (11)
C17—C9—C10105.04 (10)C23—C24—C25118.73 (14)
C11—C10—C9113.46 (11)C23—C24—H24120.6
C11—C10—C22118.45 (10)C25—C24—H24120.6
C9—C10—C22104.58 (10)C26—C25—C24120.80 (14)
C11—C10—H10106.5C26—C25—H25119.6
C9—C10—H10106.5C24—C25—H25119.6
C22—C10—H10106.5C25—C26—C27121.06 (15)
C16—C11—C12117.84 (13)C25—C26—H26119.5
C16—C11—C10120.54 (12)C27—C26—H26119.5
C12—C11—C10121.28 (13)C28—C27—C26117.54 (15)
C13—C12—C11121.10 (15)C28—C27—H27121.2
C13—C12—H12119.5C26—C27—H27121.2
C11—C12—H12119.5C27—C28—C23122.06 (13)
C12—C13—C14120.11 (15)C27—C28—N3128.86 (13)
C12—C13—H13119.9C23—C28—N3109.08 (12)
C14—C13—H13119.9O5—C29—N3126.03 (12)
C15—C14—C13120.08 (14)O5—C29—C22126.45 (12)
C15—C14—H14120.0N3—C29—C22107.51 (11)
C13—C14—H14120.0O3—N1—O4122.10 (12)
C14—C15—C16119.42 (15)O3—N1—C9119.37 (12)
C14—C15—H15120.3O4—N1—C9118.39 (12)
C16—C15—H15120.3C17—N2—C21111.30 (11)
O2—C16—C11121.60 (12)C17—N2—C22107.05 (10)
O2—C16—C15117.02 (13)C21—N2—C22116.93 (10)
C11—C16—C15121.37 (14)C29—N3—C28112.30 (11)
N2—C17—C18110.64 (11)C29—N3—H3A123.8
N2—C17—C9104.11 (10)C28—N3—H3A123.8
C18—C17—C9119.60 (11)C2—O1—C1118.13 (17)
N2—C17—H17107.3C16—O2—C8112.06 (10)
O1—C2—C3—C4179.39 (17)C9—C10—C22—C23154.69 (10)
C7—C2—C3—C40.6 (3)C11—C10—C22—C2938.33 (15)
C2—C3—C4—C52.6 (3)C9—C10—C22—C2989.17 (12)
C3—C4—C5—C63.7 (3)N2—C22—C23—C2459.95 (18)
C3—C4—C5—C8178.97 (15)C10—C22—C23—C2455.57 (19)
C4—C5—C6—C71.7 (2)C29—C22—C23—C24177.72 (14)
C8—C5—C6—C7178.92 (15)N2—C22—C23—C28121.06 (12)
O1—C2—C7—C6178.54 (17)C10—C22—C23—C28123.42 (12)
C3—C2—C7—C62.5 (3)C29—C22—C23—C281.27 (14)
C5—C6—C7—C21.4 (3)C28—C23—C24—C250.4 (2)
C6—C5—C8—O226.75 (18)C22—C23—C24—C25178.55 (13)
C4—C5—C8—O2150.40 (14)C23—C24—C25—C261.1 (2)
C6—C5—C8—C9100.70 (17)C24—C25—C26—C271.0 (3)
C4—C5—C8—C982.15 (18)C25—C26—C27—C280.2 (3)
O2—C8—C9—N163.21 (13)C26—C27—C28—C230.5 (2)
C5—C8—C9—N164.26 (16)C26—C27—C28—N3178.64 (15)
O2—C8—C9—C17174.28 (10)C24—C23—C28—C270.5 (2)
C5—C8—C9—C1758.25 (16)C22—C23—C28—C27179.58 (14)
O2—C8—C9—C1057.60 (13)C24—C23—C28—N3178.85 (12)
C5—C8—C9—C10174.92 (11)C22—C23—C28—N30.27 (16)
N1—C9—C10—C11102.41 (12)N2—C22—C29—O558.98 (18)
C8—C9—C10—C1120.53 (14)C23—C22—C29—O5179.33 (13)
C17—C9—C10—C11141.59 (11)C10—C22—C29—O554.99 (17)
N1—C9—C10—C22127.09 (10)N2—C22—C29—N3119.81 (12)
C8—C9—C10—C22109.97 (11)C23—C22—C29—N31.87 (13)
C17—C9—C10—C2211.09 (12)C10—C22—C29—N3126.22 (12)
C9—C10—C11—C1611.56 (17)C8—C9—N1—O322.46 (18)
C22—C10—C11—C16134.74 (13)C17—C9—N1—O3102.05 (16)
C9—C10—C11—C12175.29 (12)C10—C9—N1—O3144.30 (14)
C22—C10—C11—C1252.11 (17)C8—C9—N1—O4161.64 (12)
C16—C11—C12—C130.7 (2)C17—C9—N1—O473.85 (15)
C10—C11—C12—C13172.64 (14)C10—C9—N1—O439.80 (16)
C11—C12—C13—C141.8 (3)C18—C17—N2—C2163.88 (14)
C12—C13—C14—C152.4 (3)C9—C17—N2—C21166.40 (10)
C13—C14—C15—C160.5 (2)C18—C17—N2—C22167.21 (11)
C12—C11—C16—O2178.36 (12)C9—C17—N2—C2237.49 (12)
C10—C11—C16—O28.27 (19)C20—C21—N2—C1758.79 (15)
C12—C11—C16—C152.6 (2)C20—C21—N2—C22177.76 (12)
C10—C11—C16—C15170.76 (12)C23—C22—N2—C17168.07 (10)
C14—C15—C16—O2178.89 (13)C10—C22—N2—C1743.95 (12)
C14—C15—C16—C112.0 (2)C29—C22—N2—C1776.77 (13)
N1—C9—C17—N2101.06 (11)C23—C22—N2—C2166.33 (15)
C8—C9—C17—N2134.53 (11)C10—C22—N2—C21169.55 (11)
C10—C9—C17—N214.79 (12)C29—C22—N2—C2148.83 (16)
N1—C9—C17—C1823.05 (16)O5—C29—N3—C28179.32 (13)
C8—C9—C17—C18101.35 (14)C22—C29—N3—C281.88 (16)
C10—C9—C17—C18138.91 (12)C27—C28—N3—C29178.18 (15)
N2—C17—C18—C1960.27 (15)C23—C28—N3—C291.07 (17)
C9—C17—C18—C19178.82 (12)C3—C2—O1—C116.0 (3)
C17—C18—C19—C2054.91 (18)C7—C2—O1—C1165.1 (2)
C18—C19—C20—C2153.21 (19)C11—C16—O2—C830.37 (17)
C19—C20—C21—N253.69 (18)C15—C16—O2—C8150.56 (13)
C11—C10—C22—N2160.01 (11)C5—C8—O2—C16163.66 (11)
C9—C10—C22—N232.51 (12)C9—C8—O2—C1663.46 (14)
C11—C10—C22—C2377.81 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.862.243.085 (2)167
C14—H14···O5ii0.932.543.358 (2)147
C8—H8···O50.982.403.234 (2)143
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC29H27N3O5
Mr497.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3438 (3), 11.3626 (4), 13.5713 (4)
α, β, γ (°)68.687 (1), 88.284 (1), 66.757 (1)
V3)1222.49 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.973, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17765, 4964, 4116
Rint0.027
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.03
No. of reflections4964
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.862.243.085 (2)167
C14—H14···O5ii0.932.543.358 (2)147
C8—H8···O50.982.403.234 (2)143
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SK,TS and DV thank the UGC (SAP–CAS) for the departmental facilties. SK also thanks DST PURSE for a Junior Research Fellowship and TS also thanks DST Inspire for a fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDevi, S. K., Srinivasan, T., Rao, J. N. S., Raghunathan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o993.  CSD CrossRef IUCr Journals
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds