supplementary materials


kj2236 scheme

Acta Cryst. (2014). E70, m25-m26    [ doi:10.1107/S1600536813034193 ]

catena-Poly[[tri­aqua­magnesium]-[mu]2-malonato]

T. de Klijn and M. Lutz

Abstract top

In the title compound, [Mg(C3H2O4)(H2O)3]n, the metal atom is in an octa­hedral environment. The octa­hedra are connected by malonate anions, forming chains along the c-axis direction. O-H...O hydrogen bonds link these chains into a three-dimensional network.

Comment top

The malonates of the divalent metals Zn, Ni, and Co are isostructural and crystallize as dihydrates in the monoclinic space group C2/m (Walter-Levy et al., 1973; Ray & Hathaway, 1982; Delgado et al., 2004; Zheng & Xie, 2004). The metals are located on sites with 2/m symmetry, octahedrally surrounded by six O atoms. The water molecules and the malonate ligand have mirror symmetry. Overall, this leads to a two-dimensional coordination network in which the layers are interlinked by O—H···O hydrogen bonds.

In this context we set out to synthesize the corresponding Mg(II) complex. Interestingly, the title compound is not isostructural to the above mentioned Zn, Ni, and Co complexes but crystallizes as a trihydrate in the orthorhombic space group Pna21. All atoms are located on general positions without symmetry. The magnesium centers are surrounded by six O atoms in a slightly distorted octahedral geometry. Three O atoms are from the deprotonated malonate ligand, and three O atoms are from the coordinated water molecules (Figure 1). The Mg—O distance to O7 is the largest. O7 is donor of two and acceptor of one hydrogen bond. Water O atoms O5 and O6 do not accept hydrogen bonds. According to the definition by Ptasiewicz-Bak et al. (1999), water molecule O5 is trigonally coordinated, and water molecules O6 and O7 in tetrahedral direction. The angles between the planes of the water molecules and the O—Mg bonds are 7(4), 29 (3), and 42 (3)° for O5, O6, and O7, respectively.

While the malonate dianion has no crystallographic symmetry, it still has an approximate mirror symmetry with an r.m.s. deviation of 0.20 Å (Pilati & Forni, 1998). By coordination to the Mg, a six-membered chelate ring is formed (Figure 2). According to the algorithm by Evans & Boeyens (1989), the conformation of the ring can be described as linear combination of 75% boat, 23% twist-boat, and 2% chair conformation.

In the title compound, the malonate dianion acts as a bridging ligand, which connects the Mg octahedra into a one-dimensional chain in the direction of the c axis (Figure 3). This distance between the Mg centers is consequently the length of the c axis [6.0920 (4) Å]. The one-dimensional coordination chains are linked by O—H···O hydrogen bonds into a three-dimensional network (Table 2). All three water molecules act as hydrogen bond donors. The non-coordinated O2 accepts two hydrogen bonds. Each of the coordinated O atoms O1, O3, and O4 accept one hydrogen bond, respectively, and one hydrogen bond is accepted by the water molecule at O7.

Related literature top

For related divalent metal malonates, see: Walter-Levy et al. (1973); Ray & Hathaway (1982); Delgado et al. (2004); Zheng & Xie (2004). For the synthesis, see: Delgado et al. (2004). For the geometry of coordinated water molecules, see: Ptasiewicz-Bak et al. (1999). For the determination of the molecular symmetry, see: Pilati & Forni (1998). For ring puckering analysis, see: Evans & Boeyens (1989).

Experimental top

Crystals were prepared according to the method by Delgado et al. (2004). 2.15 g (10.0 mmol) of magnesium acetate tetrahydrate (Fluka) were dissolved in 20 ml water. This solution was slowly added to a solution of 1.16 g (11.1 mmol) of malonic acid (Fluka) in 20 ml water. The resulting mixture was concentrated by evaporation at 333 K and normal pressure. After standing at room temperature over night, the crystals were obtained.

Refinement top

The crystal consisted of two fragments and was consequently integrated with two orientation matrices. The two matrices are related by a rotation angle of 8.6 ° about an axis approximately collinear with the c axis. Only the non-overlapping reflections were used for the structure refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: Peakref (Schreurs, 2013); data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DRAWxtl (Finger et al., 2007); software used to prepare material for publication: manual editing of the SHELXL output.

Figures top
[Figure 1] Fig. 1. Asymmetric unit in the crystal structure of title compound. View along the b axis. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Puckering of the six-membered chelate ring obtained by the coordination of the malonate dianion to the Mg(II) cation.
[Figure 3] Fig. 3. One-dimensional coordination chain in the direction of the c axis.
catena-Poly[[triaquamagnesium]-µ2-malonato] top
Crystal data top
[Mg(C3H2O4)(H2O)3]Dx = 1.674 Mg m3
Mr = 180.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 6736 reflections
a = 19.8109 (15) Åθ = 2.1–27.6°
b = 5.9314 (4) ŵ = 0.24 mm1
c = 6.0920 (4) ÅT = 150 K
V = 715.84 (9) Å3Irregular block, colourless
Z = 40.51 × 0.23 × 0.07 mm
F(000) = 376
Data collection top
Bruker Kappa APEXII
diffractometer
1533 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.023
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
h = 2525
Tmin = 0.618, Tmax = 0.746k = 77
7334 measured reflectionsl = 77
1603 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.0476P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1603 reflectionsΔρmax = 0.25 e Å3
124 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack parameter determined using 674 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.00 (9)
Crystal data top
[Mg(C3H2O4)(H2O)3]V = 715.84 (9) Å3
Mr = 180.40Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.8109 (15) ŵ = 0.24 mm1
b = 5.9314 (4) ÅT = 150 K
c = 6.0920 (4) Å0.51 × 0.23 × 0.07 mm
Data collection top
Bruker Kappa APEXII
diffractometer
1533 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
Rint = 0.023
Tmin = 0.618, Tmax = 0.746θmax = 27.5°
7334 measured reflectionsStandard reflections: ?
1603 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061Δρmax = 0.25 e Å3
S = 1.10Δρmin = 0.22 e Å3
1603 reflectionsAbsolute structure: Flack parameter determined using 674 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
124 parametersAbsolute structure parameter: 0.00 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.83901 (3)0.75469 (12)0.46114 (12)0.01041 (16)
O10.87901 (7)0.4456 (2)0.3702 (2)0.0147 (3)
O20.95295 (7)0.2264 (2)0.1994 (3)0.0191 (3)
O30.83004 (7)0.6848 (3)0.2136 (3)0.0169 (3)
O40.83378 (6)0.8126 (3)0.1265 (2)0.0145 (3)
O50.93242 (7)0.8953 (3)0.4907 (3)0.0213 (3)
H1O0.9704 (15)0.838 (5)0.554 (6)0.038 (7)*
H2O0.9365 (14)1.016 (6)0.417 (6)0.037 (8)*
O60.73907 (7)0.6562 (3)0.4342 (3)0.0162 (3)
H3O0.7155 (13)0.558 (5)0.494 (5)0.023 (6)*
H4O0.7272 (17)0.641 (6)0.322 (7)0.041 (9)*
O70.80241 (7)1.0903 (2)0.4929 (2)0.0140 (3)
H5O0.7656 (14)1.115 (5)0.421 (5)0.024 (7)*
H6O0.8277 (13)1.189 (5)0.471 (6)0.023 (7)*
C10.91739 (8)0.3990 (3)0.2095 (3)0.0128 (4)
C20.92180 (9)0.5614 (3)0.0138 (3)0.0177 (4)
H2A0.95950.66780.03940.021*
H2B0.93260.47350.11980.021*
C30.85780 (9)0.6960 (3)0.0275 (3)0.0124 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0125 (3)0.0134 (3)0.0053 (3)0.0000 (2)0.0001 (2)0.0004 (2)
O10.0191 (6)0.0153 (6)0.0097 (7)0.0016 (5)0.0040 (5)0.0016 (5)
O20.0192 (6)0.0199 (7)0.0182 (8)0.0055 (5)0.0062 (6)0.0022 (6)
O30.0225 (7)0.0229 (8)0.0053 (6)0.0001 (5)0.0014 (5)0.0012 (6)
O40.0175 (7)0.0187 (7)0.0072 (7)0.0033 (5)0.0002 (5)0.0009 (6)
O50.0163 (6)0.0232 (7)0.0245 (8)0.0034 (6)0.0070 (6)0.0103 (7)
O60.0176 (6)0.0225 (7)0.0085 (7)0.0062 (5)0.0014 (5)0.0018 (6)
O70.0143 (6)0.0146 (6)0.0131 (7)0.0006 (5)0.0012 (5)0.0008 (5)
C10.0122 (7)0.0158 (9)0.0104 (8)0.0011 (6)0.0004 (6)0.0011 (7)
C20.0169 (8)0.0253 (10)0.0110 (9)0.0053 (7)0.0046 (7)0.0061 (8)
C30.0144 (8)0.0164 (8)0.0065 (8)0.0014 (6)0.0018 (7)0.0030 (7)
Geometric parameters (Å, º) top
Mg1—O3i2.0323 (18)O5—H1O0.91 (3)
Mg1—O52.0377 (15)O5—H2O0.85 (4)
Mg1—O42.0700 (16)O6—H3O0.83 (3)
Mg1—O62.0706 (15)O6—H4O0.73 (4)
Mg1—O12.0725 (15)O7—H5O0.86 (3)
Mg1—O72.1273 (14)O7—H6O0.78 (3)
O1—C11.270 (2)C1—C21.535 (3)
O2—C11.244 (2)C2—C31.519 (2)
O3—C31.261 (3)C2—H2A0.9900
O3—Mg1ii2.0323 (18)C2—H2B0.9900
O4—C31.259 (3)
O3i—Mg1—O594.40 (7)H1O—O5—H2O117 (3)
O3i—Mg1—O4171.80 (6)Mg1—O6—H3O134.5 (19)
O5—Mg1—O493.70 (7)Mg1—O6—H4O115 (3)
O3i—Mg1—O686.35 (6)H3O—O6—H4O98 (3)
O5—Mg1—O6172.19 (7)Mg1—O7—H5O114 (2)
O4—Mg1—O685.46 (6)Mg1—O7—H6O117.8 (19)
O3i—Mg1—O196.53 (6)H5O—O7—H6O109 (3)
O5—Mg1—O192.20 (6)O2—C1—O1123.80 (17)
O4—Mg1—O184.41 (6)O2—C1—C2116.45 (17)
O6—Mg1—O195.45 (6)O1—C1—C2119.75 (15)
O3i—Mg1—O794.16 (7)C3—C2—C1114.27 (14)
O5—Mg1—O785.33 (7)C3—C2—H2A108.7
O4—Mg1—O785.25 (7)C1—C2—H2A108.7
O6—Mg1—O786.86 (6)C3—C2—H2B108.7
O1—Mg1—O7169.19 (7)C1—C2—H2B108.7
C1—O1—Mg1128.87 (12)H2A—C2—H2B107.6
C3—O3—Mg1ii145.80 (12)O4—C3—O3122.26 (16)
C3—O4—Mg1128.60 (13)O4—C3—C2118.72 (17)
Mg1—O5—H1O129.3 (19)O3—C3—C2119.02 (17)
Mg1—O5—H2O112.6 (19)
Mg1—O1—C1—O2160.10 (14)Mg1—O4—C3—C230.2 (2)
Mg1—O1—C1—C219.6 (2)Mg1ii—O3—C3—O4115.7 (2)
O2—C1—C2—C3150.96 (18)Mg1ii—O3—C3—C265.3 (3)
O1—C1—C2—C329.3 (3)C1—C2—C3—O455.5 (2)
Mg1—O4—C3—O3148.73 (14)C1—C2—C3—O3123.53 (19)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O···O2iii0.91 (3)1.80 (3)2.701 (2)170 (3)
O5—H2O···O2iv0.85 (4)1.85 (4)2.678 (2)165 (3)
O6—H3O···O4v0.83 (3)1.93 (3)2.759 (2)175 (3)
O6—H4O···O7vi0.73 (4)2.11 (4)2.838 (2)177 (3)
O7—H5O···O3vii0.86 (3)2.11 (3)2.963 (2)172 (3)
O7—H6O···O1iv0.78 (3)1.93 (3)2.703 (2)169 (3)
Symmetry codes: (iii) x+2, y+1, z+1/2; (iv) x, y+1, z; (v) x+3/2, y1/2, z+1/2; (vi) x+3/2, y1/2, z1/2; (vii) x+3/2, y+1/2, z+1/2.
Selected bond lengths (Å) top
Mg1—O3i2.0323 (18)Mg1—O62.0706 (15)
Mg1—O52.0377 (15)Mg1—O12.0725 (15)
Mg1—O42.0700 (16)Mg1—O72.1273 (14)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O···O2ii0.91 (3)1.80 (3)2.701 (2)170 (3)
O5—H2O···O2iii0.85 (4)1.85 (4)2.678 (2)165 (3)
O6—H3O···O4iv0.83 (3)1.93 (3)2.759 (2)175 (3)
O6—H4O···O7v0.73 (4)2.11 (4)2.838 (2)177 (3)
O7—H5O···O3vi0.86 (3)2.11 (3)2.963 (2)172 (3)
O7—H6O···O1iii0.78 (3)1.93 (3)2.703 (2)169 (3)
Symmetry codes: (ii) x+2, y+1, z+1/2; (iii) x, y+1, z; (iv) x+3/2, y1/2, z+1/2; (v) x+3/2, y1/2, z1/2; (vi) x+3/2, y+1/2, z+1/2.
Acknowledgements top

The X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO).

references
References top

Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 106–111.

Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.

Finger, L. W., Kroeker, M. & Toby, B. H. (2007). J. Appl. Cryst. 40, 188–192.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503–504.

Ptasiewicz-Bak, H., Olovsson, I. & McIntyre, G. J. (1999). Acta Cryst. B55, 830–840.

Ray, N. J. & Hathaway, B. J. (1982). Acta Cryst. B38, 770–773.

Schreurs, A. M. M. (2013). Peakref. Utrecht University, The Netherlands.

Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Walter-Levy, L., Perrotey, J. & Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351–1354.

Zheng, Y.-Q. & Xie, H. Z. (2004). J. Coord. Chem. 57, 17–18.