supplementary materials


lh5670 scheme

Acta Cryst. (2014). E70, o3    [ doi:10.1107/S1600536813032455 ]

Bis(benzyl­ammonium) di­hydrogen diphosphate

A. B. Saad, A. Elboulali, N. Ratel-Ramond, R. Mohamed and S. A. Toumi

Abstract top

The asymmetric unit of the title salt, 2C6H5CH2NH3+·H2P2O72-, contains two independent benzyl­ammonium cations and a di­hydrogen diphosphate dianion. In the crystal, O-H...O and N-H...O hydrogen bonds link the cations and anions, forming a two-dimensional network parallel to (010). Within this network, weak C-H...O hydrogen bonds are observed.

Comment top

There is current interest in the chemistry of diphosphate materials. They are involved in a variety of bioenergetic (Ernester, 1992; Lipscomb & Strater, 1996) and catalytic processes (Centi et al., 1988; Chen et al., 2002; Ballarini et al., 2006). Considering their relevance in several application areas, we are interested in this type of anion in building new hybrid materials associated to organic cations. We report here, the synthesis and the crystal structure of the title compound (I).

The asymmetric unit of (I) shown in Fig. 1, contains one diphosphate [H2P2O7]2- anion and two crystallographically independent benzylammonium cations. The two PO4 tetrahedral groups are bridged via the O4 bridging oxygen atom with P1—O4—P2 = 133.33 (6)° so as to form the diphosphate anion with a bent configurtation. The conformation is eclipsed evidenced by the psuedo-torsion angle O3—P1···P2—O7 = -6.9°. In the diphosphate group, the longest P—O distances correspond to the bridging oxygen atom with average value d(P—O4) = 1.6104 (8) Å, the intermediate distances are the P—OH bonding [d(P1—O1) = 1.5693 (9) Å, d(P2—O5) = 1.5607 (10) Å], whereas the shortest distances, ranging between 1.4762 (9) Å and 1.4987 (8) Å are related to the terminal oxygen atoms. The average value of the O—P—O angles is 109.25 (5)°. These geometrical features are in same magnitude as observed for diphosphate groups (Akriche et al., 2005; Ahmed et al., 2006; Akriche et al., 2008; Elboulali et al., 2013).

In the crystal, O—H···O and N—H···O hydrogen bonds link the cations and anions forming a two-dimensional network parallel to (010) (Table 1 and Fig. 2). Within this network, weak C—H···O hydrogen bonds are observed (Desiraju, 1991; Steiner 2002).

Related literature top

For the chemistry of diphosphate materials, see: Ernester (1992); Lipscomb & Strater (1996); Centi et al. (1988); Chen & Munson (2002); Ballarini et al. (2006). For details of hydrogen bonds, see: Desiraju (1991); Steiner (2002). For related structures, see: Akriche & Rzaigui (2005, 2008); Ahmed et al. (2006); Elboulali et al. (2013).

Experimental top

Prismatic single crystals of the title compound were prepared at room temperature by slow evaporation of a mixture of an aqueous solution (20 ml) of diphosphoric acid (5 mmol) and an ethanolic solution (10 ml) of benzylamine (4 mmol, 0.44 ml). The diphosphoric acid was produced from Na4P2O7 by using a cation-exchange resin (Amberlite IR 120).

Refinement top

All H atoms were placed in calculated positions and treated as riding, with C—H = 0.93 and 0.97 Å respectively for benzene rings and CH2 groups, N—H = 0.89 Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N,O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP (Farrugia, 2012) view of (I) with displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds represented as red dashed lines. The H-atoms not involved in H-bonds are omitted.
Bis(benzylammonium) dihydrogen diphosphate top
Crystal data top
2C7H10N+·H2P2O72F(000) = 824
Mr = 392.27Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1337 (2) ÅCell parameters from 25 reflections
b = 28.9015 (9) Åθ = 9–11°
c = 8.4727 (2) ŵ = 0.28 mm1
β = 113.449 (1)°T = 293 K
V = 1827.24 (9) Å3Prism, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
5946 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 34.3°, θmin = 2.7°
CCD rotation images, thick slices scansh = 1211
27919 measured reflectionsk = 4545
7410 independent reflectionsl = 1312
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.3854P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
7410 reflectionsΔρmax = 0.52 e Å3
230 parametersΔρmin = 0.28 e Å3
Crystal data top
2C7H10N+·H2P2O72V = 1827.24 (9) Å3
Mr = 392.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1337 (2) ŵ = 0.28 mm1
b = 28.9015 (9) ÅT = 293 K
c = 8.4727 (2) Å0.3 × 0.2 × 0.1 mm
β = 113.449 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5946 reflections with I > 2σ(I)
27919 measured reflectionsRint = 0.025
7410 independent reflectionsθmax = 34.3°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.127Δρmax = 0.52 e Å3
S = 1.06Δρmin = 0.28 e Å3
7410 reflectionsAbsolute structure: ?
230 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.16846 (4)0.04396 (2)0.78619 (4)0.02353 (7)
P20.35638 (4)0.03781 (2)0.72893 (4)0.02459 (8)
O10.27096 (13)0.08328 (3)0.91571 (12)0.0351 (2)
H1O10.32180.07231.01230.053*
O20.05569 (11)0.01565 (3)0.85084 (12)0.03180 (19)
O30.07455 (11)0.06475 (3)0.61148 (11)0.03265 (19)
O40.33579 (11)0.01439 (3)0.78719 (13)0.03276 (19)
O50.25728 (13)0.03691 (4)0.52889 (12)0.0401 (2)
H5O50.16420.05190.49980.060*
O60.55388 (11)0.04139 (3)0.77466 (12)0.0332 (2)
O70.27351 (13)0.07023 (4)0.81039 (13)0.0367 (2)
N10.27361 (14)0.05080 (4)0.87008 (14)0.0304 (2)
H1N10.16670.04670.86650.046*
H2N10.34070.02580.82870.046*
H3N10.26000.05540.97840.046*
N20.16351 (14)0.06105 (4)0.67481 (15)0.0320 (2)
H1N20.16380.06140.56970.048*
H2N20.08590.03990.73860.048*
H3N20.27270.05410.66810.048*
C10.36307 (19)0.09184 (5)0.76385 (18)0.0384 (3)
H1A0.48150.09550.76400.046*
H1B0.37690.08690.64600.046*
C20.25602 (19)0.13517 (5)0.83218 (19)0.0372 (3)
C30.1281 (3)0.14896 (6)0.7728 (3)0.0544 (4)
H30.10920.13180.68870.065*
C40.0272 (3)0.18878 (8)0.8397 (4)0.0820 (8)
H40.05980.19780.80080.098*
C50.0551 (4)0.21432 (8)0.9606 (4)0.0865 (8)
H50.01110.24111.00260.104*
C60.1804 (3)0.20080 (7)1.0213 (3)0.0717 (6)
H60.19800.21831.10550.086*
C70.2814 (2)0.16112 (6)0.9578 (2)0.0498 (4)
H70.36620.15200.99960.060*
C80.11012 (18)0.10755 (5)0.75535 (19)0.0381 (3)
H8A0.10770.10690.87070.046*
H8B0.00980.11480.76430.046*
C90.23714 (18)0.14468 (5)0.65266 (18)0.0367 (3)
C100.2192 (2)0.16351 (7)0.5112 (2)0.0522 (4)
H100.13010.15260.47810.063*
C110.3324 (3)0.19860 (8)0.4172 (3)0.0655 (5)
H110.31910.21110.32190.079*
C120.4640 (3)0.21471 (7)0.4657 (3)0.0689 (6)
H120.53820.23880.40500.083*
C130.4863 (3)0.19547 (8)0.6032 (3)0.0708 (6)
H130.57810.20580.63340.085*
C140.3720 (3)0.16037 (7)0.6985 (3)0.0563 (4)
H140.38680.14760.79280.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01799 (12)0.03007 (15)0.02214 (13)0.00091 (9)0.00756 (9)0.00035 (10)
P20.01780 (12)0.03298 (16)0.02239 (13)0.00009 (9)0.00736 (9)0.00164 (10)
O10.0328 (4)0.0354 (5)0.0301 (4)0.0006 (4)0.0051 (3)0.0056 (3)
O20.0255 (4)0.0393 (5)0.0350 (4)0.0009 (3)0.0167 (3)0.0055 (4)
O30.0284 (4)0.0423 (5)0.0243 (4)0.0000 (3)0.0073 (3)0.0042 (3)
O40.0219 (4)0.0333 (5)0.0454 (5)0.0004 (3)0.0159 (3)0.0050 (4)
O50.0276 (4)0.0650 (7)0.0250 (4)0.0070 (4)0.0076 (3)0.0027 (4)
O60.0191 (3)0.0444 (5)0.0345 (4)0.0029 (3)0.0089 (3)0.0056 (4)
O70.0382 (5)0.0374 (5)0.0379 (5)0.0049 (4)0.0187 (4)0.0000 (4)
N10.0269 (4)0.0310 (5)0.0351 (5)0.0003 (4)0.0143 (4)0.0008 (4)
N20.0294 (5)0.0337 (6)0.0367 (5)0.0035 (4)0.0174 (4)0.0033 (4)
C10.0359 (6)0.0401 (7)0.0359 (6)0.0054 (5)0.0109 (5)0.0047 (5)
C20.0370 (6)0.0323 (6)0.0423 (7)0.0083 (5)0.0158 (5)0.0087 (5)
C30.0575 (9)0.0460 (9)0.0719 (11)0.0067 (7)0.0387 (9)0.0124 (8)
C40.0679 (13)0.0560 (13)0.132 (2)0.0072 (10)0.0504 (15)0.0200 (14)
C50.0729 (14)0.0381 (10)0.127 (2)0.0086 (10)0.0175 (15)0.0029 (12)
C60.0788 (14)0.0419 (10)0.0772 (14)0.0134 (9)0.0128 (11)0.0112 (9)
C70.0545 (9)0.0426 (8)0.0528 (9)0.0113 (7)0.0217 (7)0.0000 (7)
C80.0315 (6)0.0387 (7)0.0395 (6)0.0033 (5)0.0093 (5)0.0023 (5)
C90.0324 (6)0.0309 (6)0.0426 (7)0.0009 (5)0.0106 (5)0.0053 (5)
C100.0475 (8)0.0508 (9)0.0612 (10)0.0059 (7)0.0247 (8)0.0099 (8)
C110.0687 (12)0.0545 (11)0.0703 (12)0.0080 (9)0.0244 (10)0.0220 (9)
C120.0640 (12)0.0480 (10)0.0782 (14)0.0195 (9)0.0110 (10)0.0093 (10)
C130.0656 (12)0.0685 (13)0.0795 (14)0.0334 (10)0.0301 (11)0.0005 (11)
C140.0568 (10)0.0588 (11)0.0584 (10)0.0203 (8)0.0283 (8)0.0006 (8)
Geometric parameters (Å, º) top
P1—O21.4869 (9)C3—C41.396 (3)
P1—O31.4953 (9)C3—H30.9300
P1—O11.5693 (9)C4—C51.353 (4)
P1—O41.6042 (9)C4—H40.9300
P2—O71.4762 (10)C5—C61.369 (4)
P2—O61.4987 (9)C5—H50.9300
P2—O51.5607 (10)C6—C71.388 (3)
P2—O41.6166 (10)C6—H60.9300
O1—H1O10.8200C7—H70.9300
O5—H5O50.8200C8—C91.5035 (19)
N1—C11.4917 (17)C8—H8A0.9700
N1—H1N10.8900C8—H8B0.9700
N1—H2N10.8900C9—C101.376 (2)
N1—H3N10.8900C9—C141.378 (2)
N2—C81.4914 (18)C10—C111.388 (3)
N2—H1N20.8900C10—H100.9300
N2—H2N20.8900C11—C121.372 (3)
N2—H3N20.8900C11—H110.9300
C1—C21.504 (2)C12—C131.366 (3)
C1—H1A0.9700C12—H120.9300
C1—H1B0.9700C13—C141.396 (3)
C2—C31.382 (2)C13—H130.9300
C2—C71.383 (2)C14—H140.9300
O2—P1—O3116.03 (5)C4—C3—H3120.1
O2—P1—O1112.01 (6)C5—C4—C3120.6 (2)
O3—P1—O1108.73 (5)C5—C4—H4119.7
O2—P1—O4110.57 (5)C3—C4—H4119.7
O3—P1—O4108.51 (5)C4—C5—C6120.2 (2)
O1—P1—O499.70 (5)C4—C5—H5119.9
O7—P2—O6118.50 (6)C6—C5—H5119.9
O7—P2—O5112.56 (6)C5—C6—C7120.3 (2)
O6—P2—O5108.61 (5)C5—C6—H6119.9
O7—P2—O4109.12 (5)C7—C6—H6119.9
O6—P2—O4102.49 (5)C2—C7—C6119.97 (19)
O5—P2—O4104.16 (6)C2—C7—H7120.0
P1—O1—H1O1109.5C6—C7—H7120.0
P1—O4—P2133.33 (6)N2—C8—C9111.74 (11)
P2—O5—H5O5109.5N2—C8—H8A109.3
C1—N1—H1N1109.5C9—C8—H8A109.3
C1—N1—H2N1109.5N2—C8—H8B109.3
H1N1—N1—H2N1109.5C9—C8—H8B109.3
C1—N1—H3N1109.5H8A—C8—H8B107.9
H1N1—N1—H3N1109.5C10—C9—C14119.20 (15)
H2N1—N1—H3N1109.5C10—C9—C8119.97 (14)
C8—N2—H1N2109.5C14—C9—C8120.83 (15)
C8—N2—H2N2109.5C9—C10—C11120.81 (18)
H1N2—N2—H2N2109.5C9—C10—H10119.6
C8—N2—H3N2109.5C11—C10—H10119.6
H1N2—N2—H3N2109.5C12—C11—C10119.7 (2)
H2N2—N2—H3N2109.5C12—C11—H11120.2
N1—C1—C2111.18 (11)C10—C11—H11120.2
N1—C1—H1A109.4C13—C12—C11120.08 (18)
C2—C1—H1A109.4C13—C12—H12120.0
N1—C1—H1B109.4C11—C12—H12120.0
C2—C1—H1B109.4C12—C13—C14120.38 (19)
H1A—C1—H1B108.0C12—C13—H13119.8
C3—C2—C7119.23 (16)C14—C13—H13119.8
C3—C2—C1120.29 (15)C9—C14—C13119.82 (19)
C7—C2—C1120.46 (14)C9—C14—H14120.1
C2—C3—C4119.7 (2)C13—C14—H14120.1
C2—C3—H3120.1
O2—P1—O4—P244.21 (10)C3—C2—C7—C60.7 (2)
O3—P1—O4—P284.10 (10)C1—C2—C7—C6179.28 (15)
O1—P1—O4—P2162.27 (9)C5—C6—C7—C20.2 (3)
O7—P2—O4—P151.43 (10)N2—C8—C9—C1081.81 (18)
O6—P2—O4—P1177.87 (9)N2—C8—C9—C1498.38 (17)
O5—P2—O4—P168.98 (10)C14—C9—C10—C111.4 (3)
N1—C1—C2—C390.66 (17)C8—C9—C10—C11178.43 (17)
N1—C1—C2—C787.87 (16)C9—C10—C11—C120.1 (3)
C7—C2—C3—C40.2 (3)C10—C11—C12—C131.7 (4)
C1—C2—C3—C4178.79 (18)C11—C12—C13—C142.0 (4)
C2—C3—C4—C50.8 (4)C10—C9—C14—C131.0 (3)
C3—C4—C5—C61.3 (4)C8—C9—C14—C13178.81 (18)
C4—C5—C6—C70.8 (4)C12—C13—C14—C90.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O6i0.821.902.7208 (13)174
O5—H5O5···O3ii0.821.832.6061 (13)158
N1—H1N1···O20.892.072.9292 (13)162
N1—H2N1···O6iii0.892.102.9698 (15)166
N1—H2N1···O4iii0.892.533.1493 (13)127
N1—H3N1···O7iv0.891.882.7645 (15)169
N2—H1N2···O3ii0.891.942.7956 (15)160
N2—H2N2···O20.891.982.8637 (15)169
N2—H3N2···O6iii0.891.992.8053 (14)152
C1—H1B···O5ii0.972.523.3333 (19)141
C8—H8B···O70.972.403.1558 (17)135
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O6i0.821.902.7208 (13)174.1
O5—H5O5···O3ii0.821.832.6061 (13)158.0
N1—H1N1···O20.892.072.9292 (13)161.8
N1—H2N1···O6iii0.892.102.9698 (15)166.3
N1—H2N1···O4iii0.892.533.1493 (13)126.9
N1—H3N1···O7iv0.891.882.7645 (15)169.4
N2—H1N2···O3ii0.891.942.7956 (15)159.7
N2—H2N2···O20.891.982.8637 (15)169.3
N2—H3N2···O6iii0.891.992.8053 (14)152.0
C1—H1B···O5ii0.972.523.3333 (19)140.8
C8—H8B···O70.972.403.1558 (17)134.8
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y, z+2.
Acknowledgements top

No acknowledgements

references
References top

Ahmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796–m1798.

Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609.

Akriche, S. & Rzaigui, M. (2008). Struct. Chem. 19, 827–831.

Ballarini, N., Cavani, F., Cortelli, C., Ligi, S., Pierelli, F., Trifiro, F., Fumagalli, C., Mazzoni, G. & Monti, T. (2006). Top. Catal. 38, 147–156.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Centi, G., Trifirò, F., Ebner, J. R. & Franchetti, V. M. (1988). Chem. Rev. 88, 55–80.

Chen, B. & Munson, E. J. (2002). J. Am. Chem. Soc. 124, 1638–1652.

Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.

Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.

Elboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o213–o214.

Ernester, L. (1992). In Molecular Mechanism in Bioenergetics. Amsterdam: Elsevier.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Lipscomb, W. N. & Strater, N. (1996). Chem. Rev. 96, 2375–2433.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.