supplementary materials


qm2102 scheme

Acta Cryst. (2014). E70, o57-o58    [ doi:10.1107/S1600536813033527 ]

4-[(E)-(4-Chloro­benzyl­idene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione

B. K. Sarojini, P. S. Manjula, M. Kaur, B. J. Anderson and J. P. Jasinski

Abstract top

In the title compound, C10H9ClN4S, the dihedral angle between the mean planes of the phenyl and 1H-1,2,4-triazole-5(4H)-thione rings is 25.3 (9)°. The latter ring is essentially planar, with maximum deviations of 0.010 and -0.010 Å for the ring N atom in the 4-position and ring C atom bearing the methyl group, respectively. An intra­molecular C-H...S contact occurs. In the crystal, pairs of weak N-H...S inter­actions link the mol­ecules into inversion dimers in the ac plane, forming R22(8) graph-set motifs. In addition, weak [pi]-[pi] inter­actions [centroid-centroid distances = 3.3463 (14) and 3.6127 (13)Å] are observed.

Comment top

During the last few decades, there has been a considerable interest in the chemistry of Schiff base compounds (Dubey & Vaid, 1991; Yadav et al., 1994). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001; Wyrzykiewicz & Pruka, 1998; Reddy & Lirgappa, 1994). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei et al., 1981,1982), analgesic (Thieme et al., 1973a,b), antiinflammatory (Dornow et al., 1964), sedative (Barrera et al.,1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity. The crystal structures of some of the related Schiff bases viz: 3-ethyl-4-[(E)-(4-fluorobenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Jeyaseelan et al., 2012); 4-[(E)-(4-fluorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione (Devarajegowda et al., 2012); 3-[2-(2,6-dichloro-anilino)benzyl]-4-[(4-methoxybenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Vinduvahini et al., 2011); 3-(adamantan-1-yl)-1-[(4-ethylpiperazin-1-yl)methyl]-4-[(E)-(4-hydroxy-benzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Almutairi et al., 2012); 4-{(2E)-2-[1-(4-Methoxyphenyl)ethylidene]hydrazinyl}-8-(trifluoromethyl)quinoline (Kubicki et al., 2012); (E)-N'-(4-Methoxybenzylidene)-2-m-tolylacetohydrazide (Praveen et al., 2012); (1Z)-1-[(2E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-ylidene]-2-(2,4-dinitrophenyl)hydrazine (Kant et al., 2012); (E)-3-(2-ethoxyphenyl)-4-(2-fluorobenzylideneamino)-1H-1,2,4-triazole-5(4H)-thione (Ding et al.,2009) have been reported. Crystal structures of some of the Schiff bases were also reported from our group (Sarojini et al., 2007a,b). In continuation of our work on the synthesis of acetamides derivatives, we report herein the crystal structure of the title compound, C10H9ClN4S, (I).

In the title compound, (I), C10H9ClN4S, the dihedral angle between the mean planes of the phenyl ring and the1H-1,2,4-triazole-5(4H)-thione ring is 25.3 (9)° (Fig.1). The 1,2,4-triazole-5(4H)-thione ring is essentially planar with a maximum deviation of 0.010Å and -0.010Å for the N2 nitrogen and C9 carbon atom, respectively. Bond lengths and bond angles are in normal ranges (Allen et al., 1987).In the crystal, weak N4—H4···S1 intermolecular interactions forming R22(8) graph set motifs link the molecules into dimers diagonally in the ac plane (Fig. 2). In addition, weak Cg–Cg ππ intermolecular interactions are observed which may contribute to crystal packing (Cg1–Cg1 = 3.3463 (14)Å; -x, 1-y, -z; Cg2–Cg2 = 3.6127 (13)Å; 1-x, 2-y, 1-z; Cg1 = N2/C81/N4/N3/C9; Cg2 = C2–C7) (Grimme, 1987). No classical hydrogen bonds were observed.

Related literature top

For the chemistry of Schiff base compounds, see: Dubey & Vaid (1991); Yadav et al. (1994). For the use of Schiff bases containing different donor atoms in analytical applications and metal coordination, see: Galic et al. (2001); Wyrzykiewicz & Prukah (1998); Reddy & Lirgappa (1994). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei et al., 1981,1982), analgesic (Thieme et al., 1973a,b), antiinflammatory (Dornow et al., 1964), sedative (Barrera et al.,1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity. For the crystal structures of related Schiff bases, see: Jeyaseelan et al. (2012); Devarajegowda et al. (2012); Vinduvahini et al. (2011); Almutairi et al. (2012); Kubicki et al. (2012); Praveen et al. (2012); Kant et al. (2012); Ding et al. (2009). For the crystal structures of Schiff bases reported by our group, see: Sarojini et al. (2007a,b). For standard bond lengths, see: Allen et al. (1987). For ππ stacking, see: Grimme (2008). AUTHOR: please remember to sub-dvide this section in future

Experimental top

To a suspension of 4-chlorobenzaldehyde (1.405 g, 0.01 mol) in ethanol (15 ml), 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole- 3-thione (0.01 mol, 1.3 g) was added and heated to get a clear solution. To this a few drops of conc.H2SO4 was added as a catalyst and refluxed for 36 h on a water bath. The precipitate formed was filtered and recrystallized from methanol to get the titled compound. The single crystals were grown from methanol (M.P.:.463 - 465 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3) times Ueq of the parent atom.Idealised Me refined as rotating groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C10H9ClN4S) showing the labeling scheme with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate weak N4—H4···S1 intermolecular interactions forming R22(8) graph set motifs linking the molecules into dimers diagonally in the ac plane. H atoms not involved in hydrogen bonding have been removed for clarity.
[Figure 3] Fig. 3. Synthesis scheme for (I).
4-[(E)-(4-Chlorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C10H9ClN4SZ = 2
Mr = 252.72F(000) = 260
Triclinic, P1Dx = 1.471 Mg m3
a = 7.0718 (8) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.2901 (8) ÅCell parameters from 1400 reflections
c = 11.8434 (7) Åθ = 3.8–72.2°
α = 92.778 (7)°µ = 4.49 mm1
β = 94.986 (7)°T = 173 K
γ = 109.752 (10)°Irregular, colourless
V = 570.50 (10) Å30.42 × 0.08 × 0.06 mm
Data collection top
Agilent Gemini EOS
diffractometer
2195 independent reflections
Radiation source: Enhance (Cu) X-ray Source1860 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.030
ω scansθmax = 72.3°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 88
Tmin = 0.544, Tmax = 1.000k = 88
3413 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0694P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2195 reflectionsΔρmax = 0.34 e Å3
146 parametersΔρmin = 0.39 e Å3
0 restraints
Crystal data top
C10H9ClN4Sγ = 109.752 (10)°
Mr = 252.72V = 570.50 (10) Å3
Triclinic, P1Z = 2
a = 7.0718 (8) ÅCu Kα radiation
b = 7.2901 (8) ŵ = 4.49 mm1
c = 11.8434 (7) ÅT = 173 K
α = 92.778 (7)°0.42 × 0.08 × 0.06 mm
β = 94.986 (7)°
Data collection top
Agilent Gemini EOS
diffractometer
2195 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
1860 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 1.000Rint = 0.030
3413 measured reflectionsθmax = 72.3°
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.120Δρmax = 0.34 e Å3
S = 1.02Δρmin = 0.39 e Å3
2195 reflectionsAbsolute structure: ?
146 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50541 (9)0.96033 (9)0.77738 (5)0.03752 (19)
S10.33106 (9)0.64930 (9)0.16551 (5)0.03564 (19)
N10.0401 (3)0.4905 (3)0.27296 (16)0.0295 (4)
N20.0729 (3)0.4344 (3)0.16664 (15)0.0287 (4)
N30.1813 (3)0.2442 (3)0.00660 (17)0.0353 (4)
N40.2891 (3)0.3680 (3)0.02140 (16)0.0317 (4)
H40.38620.36960.02710.038*
C10.0775 (3)0.6667 (3)0.31206 (19)0.0311 (5)
H10.03640.75200.26840.037*
C20.1852 (3)0.7342 (3)0.42579 (19)0.0289 (5)
C30.2005 (3)0.9179 (3)0.4726 (2)0.0320 (5)
H30.14600.99570.43010.038*
C40.2955 (3)0.9876 (3)0.5816 (2)0.0318 (5)
H4A0.30261.10950.61310.038*
C50.3788 (3)0.8714 (3)0.64183 (19)0.0307 (5)
C60.3682 (3)0.6889 (3)0.5977 (2)0.0329 (5)
H60.42650.61360.64000.039*
C70.2703 (3)0.6195 (3)0.4903 (2)0.0333 (5)
H70.26060.49590.46050.040*
C80.2301 (3)0.4851 (3)0.11732 (19)0.0291 (5)
C90.0524 (3)0.2861 (3)0.0975 (2)0.0322 (5)
C100.1023 (4)0.1949 (4)0.1262 (2)0.0431 (6)
H10A0.05900.10600.18370.065*
H10B0.22840.29490.15410.065*
H10C0.11950.12480.05940.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0398 (3)0.0455 (3)0.0282 (3)0.0191 (3)0.0056 (2)0.0031 (2)
S10.0364 (3)0.0421 (3)0.0329 (3)0.0242 (3)0.0099 (2)0.0080 (2)
N10.0255 (9)0.0372 (10)0.0263 (10)0.0134 (7)0.0047 (7)0.0010 (7)
N20.0270 (9)0.0321 (9)0.0274 (10)0.0132 (7)0.0046 (7)0.0007 (7)
N30.0369 (10)0.0397 (10)0.0325 (11)0.0212 (8)0.0063 (8)0.0057 (8)
N40.0318 (10)0.0394 (10)0.0272 (10)0.0198 (8)0.0066 (8)0.0030 (8)
C10.0260 (10)0.0337 (11)0.0334 (12)0.0113 (8)0.0029 (9)0.0044 (9)
C20.0208 (10)0.0344 (11)0.0296 (12)0.0087 (8)0.0020 (8)0.0007 (9)
C30.0264 (10)0.0364 (12)0.0355 (12)0.0153 (9)0.0017 (9)0.0010 (9)
C40.0282 (10)0.0353 (11)0.0339 (12)0.0152 (9)0.0004 (9)0.0041 (9)
C50.0248 (10)0.0406 (12)0.0260 (11)0.0112 (9)0.0007 (8)0.0001 (9)
C60.0331 (11)0.0350 (11)0.0328 (12)0.0155 (9)0.0015 (9)0.0064 (9)
C70.0346 (11)0.0307 (11)0.0342 (12)0.0122 (9)0.0009 (10)0.0001 (9)
C80.0284 (10)0.0330 (11)0.0269 (11)0.0138 (8)0.0036 (8)0.0003 (9)
C90.0314 (11)0.0350 (11)0.0311 (12)0.0148 (9)0.0021 (9)0.0024 (9)
C100.0420 (14)0.0460 (14)0.0481 (16)0.0288 (12)0.0086 (12)0.0060 (12)
Geometric parameters (Å, º) top
Cl1—C51.748 (2)C2—C71.402 (3)
S1—C81.689 (2)C3—H30.9300
N1—N21.395 (2)C3—C41.390 (3)
N1—C11.275 (3)C4—H4A0.9300
N2—C81.378 (3)C4—C51.377 (3)
N2—C91.379 (3)C5—C61.381 (3)
N3—N41.378 (2)C6—H60.9300
N3—C91.301 (3)C6—C71.379 (3)
N4—H40.8600C7—H70.9300
N4—C81.333 (3)C9—C101.484 (3)
C1—H10.9300C10—H10A0.9600
C1—C21.463 (3)C10—H10B0.9600
C2—C31.390 (3)C10—H10C0.9600
C1—N1—N2116.28 (19)C4—C5—C6122.1 (2)
C8—N2—N1131.27 (18)C6—C5—Cl1119.20 (18)
C8—N2—C9108.25 (18)C5—C6—H6120.4
C9—N2—N1119.99 (18)C7—C6—C5119.2 (2)
C9—N3—N4103.61 (18)C7—C6—H6120.4
N3—N4—H4122.9C2—C7—H7119.8
C8—N4—N3114.29 (18)C6—C7—C2120.4 (2)
C8—N4—H4122.9C6—C7—H7119.8
N1—C1—H1120.1N2—C8—S1129.63 (17)
N1—C1—C2119.8 (2)N4—C8—S1127.48 (17)
C2—C1—H1120.1N4—C8—N2102.87 (18)
C3—C2—C1118.6 (2)N2—C9—C10122.4 (2)
C3—C2—C7118.7 (2)N3—C9—N2110.94 (19)
C7—C2—C1122.6 (2)N3—C9—C10126.6 (2)
C2—C3—H3119.3C9—C10—H10A109.5
C4—C3—C2121.3 (2)C9—C10—H10B109.5
C4—C3—H3119.3C9—C10—H10C109.5
C3—C4—H4A120.9H10A—C10—H10B109.5
C5—C4—C3118.2 (2)H10A—C10—H10C109.5
C5—C4—H4A120.9H10B—C10—H10C109.5
C4—C5—Cl1118.70 (18)
Cl1—C5—C6—C7179.28 (17)C1—C2—C3—C4178.0 (2)
N1—N2—C8—S15.3 (4)C1—C2—C7—C6179.2 (2)
N1—N2—C8—N4173.2 (2)C2—C3—C4—C51.4 (3)
N1—N2—C9—N3174.80 (19)C3—C2—C7—C60.4 (3)
N1—N2—C9—C106.5 (3)C3—C4—C5—Cl1178.09 (17)
N1—C1—C2—C3171.5 (2)C3—C4—C5—C60.8 (3)
N1—C1—C2—C77.2 (3)C4—C5—C6—C70.4 (4)
N2—N1—C1—C2176.53 (18)C5—C6—C7—C21.0 (3)
N3—N4—C8—S1177.92 (17)C7—C2—C3—C40.8 (3)
N3—N4—C8—N20.6 (3)C8—N2—C9—N32.0 (3)
N4—N3—C9—N21.5 (3)C8—N2—C9—C10179.3 (2)
N4—N3—C9—C10179.8 (2)C9—N2—C8—S1177.00 (18)
C1—N1—N2—C835.9 (3)C9—N2—C8—N41.5 (2)
C1—N1—N2—C9153.2 (2)C9—N3—N4—C80.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···S1i0.862.433.2926 (19)176
C1—H1···S10.932.623.199 (2)121
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···S1i0.862.433.2926 (19)176.2
C1—H1···S10.932.623.199 (2)121.2
Symmetry code: (i) x1, y+1, z.
Acknowledgements top

BKS and PSM gratefully acknowledge the Department of Chemistry, P. A. College of Engineering, for providing research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.

Barrera, H., Vinas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027–2030.

Devarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607.

Ding, Q.-C., Huang, Y.-L., Jin, J.-Y., Zhang, L.-X., Zhou, C.-F. & Hu, M.-L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 105–106.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Dornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178.

Dubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met.Org. Chem. 21, 1299–1311.

Galic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187–194.

Grimme, S. (2008). Angew. Chem. Int. Ed. 47, 3430–3434.

Jeyaseelan, S., Devarajegowda, H. C., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1407.

Kant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Sarojini, B. K. & Narayana, B. (2012). Acta Cryst. E68, o2193.

Kubicki, M., Dutkiewicz, G., Praveen, A. S., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2012). J. Chem. Crystallogr. 42, 432–437.

Malik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387–1394.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.

Praveen, A. S., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o3435.

Reddy, H. & Lirgappa, Y. (1994). Indian J. Heterocycl. Chem. 33, 919–923.

Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551.

Sarojini, B. K., Yathirajan, H. S., Narayana, B., Sunil, K. & Bolte, M. (2007a). Acta Cryst. E63, o3521.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Thieme, P., Konig, H. & Amann, A. (1973a). BASF, Ger. Patent 2228259.

Thieme, P., Konig, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q.

Vinduvahini, M., Roopashree, K. R., Bhattacharya, S., Krishna, K. M. & Devaru, V. B. (2011). Acta Cryst. E67, o2535–o2536.

Wei, P. H. L. & Bell, C. S. (1981). Chem. Abstr. 96, 104227.

Wei, P. H. L. & Bell, C. S. (1982). American Home Products Corporation, US Patent No. 4302585.

Wyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381–387.

Yadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 925–939.