supplementary materials


su2674 scheme

Acta Cryst. (2014). E70, o48-o49    [ doi:10.1107/S1600536813033370 ]

4-Amino-3-(4-hy­droxy­benz­yl)-1H-1,2,4-triazole-5(4H)-thione

B. K. Sarojini, P. S. Manjula, M. Kaur, B. J. Anderson and J. P. Jasinski

Abstract top

In the title compound, C9H10N4OS, the dihedral angle between the benzene and 1H-1,2,4-triazole-5(4H)-thione rings is 67.51 (16)°. In the crystal, mol­ecules are liked via N-H...O hydrogen bonds, forming chains along the c-axis direction. The chains are linked via O-H...S hydrogen bonds, forming corrugated layers lying parallel to the bc plane. The layers are linked via N-H...N and N-H...S hydrogen bonds, forming a three-dimensional network.

Comment top

The chemistry of triazoles has received considerable attention in recent years because of their versatility in the synthesis of many other heterocyclic compounds. 1,2,4-Triazole derivatives are well known for their different biological activities, therefore various 1,2,4-triazole derivatives and their N-bridged heterocyclic analogs have been extensively studied (Holla et al., 2001,2006). The derivatives of 1,2,4-triazole are known to exhibit anti-inflammatory (Mullican et al., 1993), antiviral (Jones et al., 1965), antimicrobial (Shams El-Dine et al., 1974; Misato et al., 1977) and antidepressant activity (Kane et al., 1988). Hence synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity.

The crystal structures of some related triazoles have been reported: 5-(2-Chlorophenyl)-4-phenyl-3,4-dihydro-2H-1,2,4-triazole-3-thione (Puviarasan et al., 1999); 4-Amino-5-(2-ethoxyphenyl)-2,4-dihydro- 2H-1,2,4-triazole-3-thione-triphenylphosphine oxide (Chen et al., 2007); Ethyl2-(3-methyl-5-sulfanylidene-4,5-dihydro- 1H-1,2,4-triazol-4-yl)acetate (Karczmarzyk et al., 2012); 3-(4-Amino-3-phenyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1- yl)-3-(2-chlorophenyl)-1-phenylpropan-1-one (Gao et al., 2011). The present work describes the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the dihedral angle between the benzene ring (C2-C7) and the 1H-1,2,4-triazole-5(4H)-thione ring (N1/N2/C9/N3/C8) is 67.51 (16) °.

In the crystal, a single N2—H2···O1 hydrogen bond and additional weak O1—H1···S1, N4—H4A···S1 and N4—H4B···N1 hydrogen bonds are observed (Table 1 and Fig. 2). These interactions link the molecules into one-dimensional chains extending along each of the three axes forming a three-dimensional supramolecular framework.

Related literature top

For biological properties of 1,2,4-triazole derivatives, see: Holla et al. (2001, 2006); Mullican et al. (1993); Jones et al. (1965); Shams El-Dine et al. (1974); Misato et al. (1977); Kane et al. (1988). For related structures, see: Puviarasan et al. (1999); Chen et al. (2007); Karczmarzyk et al. (2012); Gao et al. (2011).

Experimental top

The synthesis of the title compound is described in Fig. 3. A well triturated mixture of 4-hydroxyphenylacetic acid (0.755 g, 0.005 mol) and thiocarbohydrazide (0.53 g, 0.005 mol) was fused in a round bottom flask for one hour on an oil bath at 413 K. It was cooled to room temperature and washed with sodium bicarbonate (5%) solution to remove unreacted acid and again washed with water. The dried compound was recrystallized from methanol yielding colourless block-like crystals (M.p. 475-477 K).

Refinement top

The OH and NH2 H atoms (H1, and H4A/H4B, respectively) were located in a difference Fourier map and freely refined. The remaining H atoms were placed in calculated positions and refined using the riding model approximation: N-H = 0.88 Å, C-H = 0.95 and 0.99 Å for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines; see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. Synthesis of the title compound.
4-Amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C9H10N4OSZ = 1
Mr = 222.27F(000) = 116
Triclinic, P1Dx = 1.493 Mg m3
a = 4.2117 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.1891 (7) ÅCell parameters from 1329 reflections
c = 10.0641 (11) Åθ = 3.5–32.8°
α = 100.590 (9)°µ = 0.31 mm1
β = 94.916 (9)°T = 173 K
γ = 104.589 (10)°Block, colourless
V = 247.14 (5) Å30.34 × 0.30 × 0.24 mm
Data collection top
Agilent Gemini EOS
diffractometer
1897 independent reflections
Radiation source: Enhance (Mo) X-ray Source1826 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.035
ω scansθmax = 32.9°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012).
h = 66
Tmin = 0.941, Tmax = 1.000k = 89
2555 measured reflectionsl = 1412
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0512P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.29 e Å3
1897 reflectionsΔρmin = 0.27 e Å3
145 parametersAbsolute structure: Flack (1983), 265 Friedel pairs (15% coverage)
3 restraintsAbsolute structure parameter: 0.02 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
C9H10N4OSγ = 104.589 (10)°
Mr = 222.27V = 247.14 (5) Å3
Triclinic, P1Z = 1
a = 4.2117 (5) ÅMo Kα radiation
b = 6.1891 (7) ŵ = 0.31 mm1
c = 10.0641 (11) ÅT = 173 K
α = 100.590 (9)°0.34 × 0.30 × 0.24 mm
β = 94.916 (9)°
Data collection top
Agilent Gemini EOS
diffractometer
1897 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012).
1826 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 1.000Rint = 0.035
2555 measured reflectionsθmax = 32.9°
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102Δρmax = 0.29 e Å3
S = 1.10Δρmin = 0.27 e Å3
1897 reflectionsAbsolute structure: Flack (1983), 265 Friedel pairs (15% coverage)
145 parametersAbsolute structure parameter: 0.02 (9)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98393 (10)0.49047 (8)0.16110 (7)0.02134 (16)
O11.3407 (6)1.0709 (3)0.7411 (2)0.0248 (4)
N10.8426 (6)1.0486 (4)0.0472 (3)0.0217 (5)
N20.9604 (6)0.9245 (4)0.0560 (2)0.0205 (5)
H21.07380.98620.11560.025*
N30.7176 (5)0.6844 (3)0.0529 (2)0.0164 (4)
N40.5720 (6)0.4828 (4)0.0952 (3)0.0227 (5)
H4A0.38130.41580.04640.027*
C10.5336 (7)0.9471 (5)0.2357 (3)0.0211 (5)
H1A0.33420.81920.23140.025*
H1B0.46031.08710.23570.025*
C20.7593 (7)0.9795 (4)0.3678 (3)0.0187 (5)
C30.7404 (8)0.8033 (5)0.4367 (3)0.0238 (6)
H30.58760.65870.39910.029*
C40.9400 (8)0.8336 (5)0.5596 (3)0.0248 (6)
H40.92540.71040.60490.030*
C51.1611 (7)1.0458 (5)0.6157 (3)0.0200 (5)
C61.1905 (7)1.2236 (5)0.5479 (3)0.0229 (6)
H61.34661.36720.58490.027*
C70.9885 (8)1.1898 (5)0.4243 (3)0.0219 (5)
H71.00711.31190.37790.026*
C80.6955 (6)0.8986 (4)0.1125 (3)0.0167 (5)
C90.8850 (6)0.7017 (4)0.0565 (3)0.0168 (5)
H11.500 (12)1.216 (7)0.758 (5)0.038 (11)*
H4B0.713 (8)0.395 (5)0.079 (3)0.009 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0238 (3)0.0209 (3)0.0187 (3)0.0076 (2)0.0035 (2)0.0003 (2)
O10.0279 (10)0.0253 (10)0.0156 (10)0.0007 (8)0.0003 (8)0.0027 (8)
N10.0283 (12)0.0185 (10)0.0187 (11)0.0085 (9)0.0033 (9)0.0020 (8)
N20.0267 (12)0.0182 (10)0.0158 (11)0.0041 (9)0.0051 (9)0.0039 (8)
N30.0182 (10)0.0157 (9)0.0148 (10)0.0033 (8)0.0018 (8)0.0041 (8)
N40.0253 (11)0.0180 (10)0.0247 (13)0.0021 (9)0.0074 (10)0.0079 (9)
C10.0215 (11)0.0252 (12)0.0185 (13)0.0102 (10)0.0038 (10)0.0038 (10)
C20.0221 (11)0.0212 (11)0.0132 (12)0.0070 (9)0.0053 (9)0.0017 (9)
C30.0278 (13)0.0204 (11)0.0203 (13)0.0018 (10)0.0023 (11)0.0043 (10)
C40.0322 (14)0.0202 (12)0.0194 (13)0.0012 (10)0.0023 (11)0.0061 (10)
C50.0215 (12)0.0234 (12)0.0145 (11)0.0059 (10)0.0058 (10)0.0016 (9)
C60.0253 (13)0.0194 (11)0.0199 (13)0.0007 (10)0.0050 (11)0.0008 (10)
C70.0289 (13)0.0193 (11)0.0187 (13)0.0067 (10)0.0067 (11)0.0051 (9)
C80.0185 (11)0.0173 (11)0.0138 (11)0.0059 (9)0.0013 (9)0.0020 (9)
C90.0182 (11)0.0173 (10)0.0135 (11)0.0034 (9)0.0002 (9)0.0026 (9)
Geometric parameters (Å, º) top
S1—C91.683 (3)C1—H1B0.9900
O1—C51.376 (4)C1—C21.517 (4)
O1—H10.95 (4)C1—C81.484 (4)
N1—N21.379 (3)C2—C31.385 (4)
N1—C81.297 (4)C2—C71.396 (4)
N2—H20.8800C3—H30.9500
N2—C91.334 (3)C3—C41.389 (4)
N3—N41.403 (3)C4—H40.9500
N3—C81.380 (3)C4—C51.390 (4)
N3—C91.364 (3)C5—C61.384 (4)
N4—H4A0.8645C6—H60.9500
N4—H4B0.91 (3)C6—C71.395 (4)
C1—H1A0.9900C7—H70.9500
C5—O1—H1106 (3)C2—C3—C4121.4 (3)
C8—N1—N2104.5 (2)C4—C3—H3119.3
N1—N2—H2123.4C3—C4—H4120.3
C9—N2—N1113.2 (2)C3—C4—C5119.4 (3)
C9—N2—H2123.4C5—C4—H4120.3
C8—N3—N4124.5 (2)O1—C5—C4117.3 (3)
C9—N3—N4126.6 (2)O1—C5—C6122.3 (2)
C9—N3—C8108.8 (2)C6—C5—C4120.4 (3)
N3—N4—H4A109.6C5—C6—H6120.4
N3—N4—H4B104 (2)C5—C6—C7119.3 (3)
H4A—N4—H4B109.9C7—C6—H6120.4
H1A—C1—H1B107.8C2—C7—H7119.4
C2—C1—H1A109.0C6—C7—C2121.1 (3)
C2—C1—H1B109.0C6—C7—H7119.4
C8—C1—H1A109.0N1—C8—N3110.1 (2)
C8—C1—H1B109.0N1—C8—C1125.8 (2)
C8—C1—C2113.0 (2)N3—C8—C1124.2 (2)
C3—C2—C1121.1 (2)N2—C9—S1129.2 (2)
C3—C2—C7118.3 (3)N2—C9—N3103.4 (2)
C7—C2—C1120.6 (2)N3—C9—S1127.36 (19)
C2—C3—H3119.3
O1—C5—C6—C7176.7 (3)C3—C2—C7—C60.9 (4)
N1—N2—C9—S1178.7 (2)C3—C4—C5—O1176.6 (3)
N1—N2—C9—N31.2 (3)C3—C4—C5—C62.1 (5)
N2—N1—C8—N30.1 (3)C4—C5—C6—C71.9 (4)
N2—N1—C8—C1178.4 (3)C5—C6—C7—C20.4 (4)
N4—N3—C8—N1177.2 (3)C7—C2—C3—C40.7 (4)
N4—N3—C8—C14.3 (4)C8—N1—N2—C90.8 (3)
N4—N3—C9—S14.9 (4)C8—N3—C9—S1178.64 (19)
N4—N3—C9—N2177.5 (3)C8—N3—C9—N21.1 (3)
C1—C2—C3—C4178.2 (3)C8—C1—C2—C398.8 (3)
C1—C2—C7—C6178.1 (3)C8—C1—C2—C782.2 (3)
C2—C1—C8—N194.8 (3)C9—N3—C8—N10.7 (3)
C2—C1—C8—N383.5 (3)C9—N3—C8—C1179.1 (2)
C2—C3—C4—C50.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.881.972.840 (3)170
O1—H1···S1ii0.95 (5)2.27 (5)3.180 (2)159 (4)
N4—H4A···S1iii0.862.743.435 (3)138
N4—H4B···N1iv0.91 (3)2.32 (3)3.149 (4)153 (3)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.881.972.840 (3)170
O1—H1···S1ii0.95 (5)2.27 (5)3.180 (2)159 (4)
N4—H4A···S1iii0.862.743.435 (3)138
N4—H4B···N1iv0.91 (3)2.32 (3)3.149 (4)153 (3)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x, y1, z.
Acknowledgements top

BKS and PSM gratefully acknowledge the Department of Chemistry, P. A. College of Engineering, for providing research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Chen, X.-A., Huang, X.-B. & Wu, H.-Y. (2007). Acta Cryst. E63, o3191.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794.

Holla, B. S., Rao, B. S., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). Eur. J. Med. Chem. 41, 657–663.

Holla, B. S., Sarojini, B. K., Rao, B. S., Akberali, P. M. & Suchetha Kumari, N. (2001). Il Farmaco, 56, 565–570.

Jones, D. H., Slack, R., Squires, S. & Wooldridge, K. R. H. (1965). J. Med. Chem. 8, 676–680.

Kane, J. M., Dudley, M. W., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253–1258.

Karczmarzyk, Z., Pitucha, M., Wysocki, W., Fruziński, A. & Olender, E. (2012). Acta Cryst. E68, o3264–o3265.

Misato, T., Ko, K., Honma, Y., Konno, K. & Taniyama, E. (1977). Chem. Abstr. 87, 147054a.

Mullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. & Dyer, R. D. (1993). J. Med. Chem. 36, 1090–1099.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.

Puviarasan, K., Govindasamy, L., Shanmuga Sundara Raj, S., Velmurugan, D., Jayanthi, G. & Fun, H.-K. (1999). Acta Cryst. C55, 951–953.

Shams El-Dine, Sh. A. & Hazzaa, A. A. B. (1974). Pharmazie, 29, 761–768.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.