metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­[(pyridine-2-carbo­nitrile-κN1)copper(II)]

aHefei University of Technology, Hefei, People's Republic of China
*Correspondence e-mail: luomei@pku.edu.cn

(Received 25 November 2013; accepted 18 December 2013; online 24 December 2013)

The title binuclear compound, [Cu2(CH3COO)4(C6H4N2)2], lies about an inversion center, with the CuII cation bridged by four acetate anions and coordinated by a pyridine N atom in a distorted square-pyramidal geometry. The Cu⋯Cu distance is 2.5997 (15) Å. In the crystal, mol­ecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds into a three-dimensional supra­molecular architecture. The crystal studied was a non-merohedral twin with a minor twin component of 4.1 (1)%.

Related literature

For related binuclear compounds, see: Fairuz et al. (2010[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1077-m1078.]); Chang et al. (2011[Chang, H.-C., Cole, J. M., Lin, T.-C. & Waddell, P. G. (2011). Acta Cryst. E67, m691.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C6H4N2)2]

  • Mr = 571.48

  • Monoclinic, P 21 /c

  • a = 7.929 (5) Å

  • b = 19.817 (12) Å

  • c = 8.222 (5) Å

  • β = 118.83 (2)°

  • V = 1131.8 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 140 K

  • 0.32 × 0.12 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.58, Tmax = 0.89

  • 7361 measured reflections

  • 2077 independent reflections

  • 1792 reflections with I > 2σ(I)

  • Rint = 0.165

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.159

  • S = 1.07

  • 2077 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −1.48 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.975 (4)
Cu1—O2i 1.980 (4)
Cu1—O3i 1.941 (4)
Cu1—O4 1.952 (4)
Cu1—N1 2.235 (4)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2ii 0.93 2.60 3.196 (9) 122
C8—H8B⋯N2iii 0.96 2.57 3.491 (8) 160
C10—H10A⋯O4iv 0.96 2.54 3.381 (7) 147
Symmetry codes: (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Cu–N complexes have occupied an important position in catalytic processes. In connection with on-going studies into the structural characterization of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes (Fairuz et al., 2010; Chang et al. (2011), the title complex, (I), was investigated. The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two Cu II atoms bridged by four acetate groups. The Cu–O bond distances ranged from 1.941 (4) to 1.980 (4) Å (Table 1). The distorted square-pyramidal coordination environment for the Cu atom is completed by a pyridine-N atom and four carboxyl-O atoms of acetate anions. In the binuclear compound, the Cu ···Cu distance is 2.5997 (15) Å. In the crystal, the molecules are linked by weak C—H···O and C—H···N hydrogen bonds into three dimensional supramolecular architecture.

Related literature top

For related binuclear compounds, see: Fairuz et al. (2010); Chang et al. (2011).

Experimental top

2-Cyanopyridine (23.1233 g, 30 mmol) was added to a THF solution (60 ml) of Cu(OAc)2.H2O (1.9972 g, 5 mmol). The reaction mixture was stirred vigorously while refluxing for 48 h. The filtrate was slowly evaporated, the blue single crystals were obtained.

Refinement top

H atoms were placed in calculated position with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in a riding mode with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
Tetra-µ-acetato-κ8O:O'-bis[(pyridine-2-carbonitrile-κN1)copper(II)] top
Crystal data top
[Cu2(C2H3O2)4(C6H4N2)2]F(000) = 580
Mr = 571.48Dx = 1.677 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3034 reflections
a = 7.929 (5) Åθ = 2.9–30.5°
b = 19.817 (12) ŵ = 1.93 mm1
c = 8.222 (5) ÅT = 140 K
β = 118.83 (2)°Block, blue
V = 1131.8 (12) Å30.32 × 0.12 × 0.06 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2077 independent reflections
Radiation source: fine-focus sealed tube1792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.165
ϕ and ω scansθmax = 25.3°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.58, Tmax = 0.89k = 2323
7361 measured reflectionsl = 96
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0938P)2]
where P = (Fo2 + 2Fc2)/3
2077 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 1.48 e Å3
Crystal data top
[Cu2(C2H3O2)4(C6H4N2)2]V = 1131.8 (12) Å3
Mr = 571.48Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.929 (5) ŵ = 1.93 mm1
b = 19.817 (12) ÅT = 140 K
c = 8.222 (5) Å0.32 × 0.12 × 0.06 mm
β = 118.83 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2077 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1792 reflections with I > 2σ(I)
Tmin = 0.58, Tmax = 0.89Rint = 0.165
7361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.07Δρmax = 0.89 e Å3
2077 reflectionsΔρmin = 1.48 e Å3
157 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.40864 (8)0.05361 (2)0.50591 (7)0.0184 (3)
N10.2510 (5)0.14273 (19)0.5328 (6)0.0199 (8)
N20.6530 (7)0.2387 (2)0.6344 (9)0.0436 (14)
O10.4618 (6)0.08980 (17)0.3114 (5)0.0295 (8)
O20.6269 (6)0.00139 (17)0.3074 (5)0.0283 (8)
O30.3373 (5)0.08126 (18)0.3035 (5)0.0318 (8)
O40.1766 (5)0.00951 (17)0.3166 (5)0.0260 (8)
C10.0735 (7)0.1301 (2)0.5040 (7)0.0253 (11)
H10.02290.08710.46450.030*
C20.0387 (7)0.1775 (2)0.5298 (7)0.0270 (11)
H20.16240.16660.50700.032*
C30.0343 (7)0.2405 (2)0.5895 (7)0.0264 (11)
H30.03940.27310.60750.032*
C40.2182 (8)0.2557 (2)0.6228 (7)0.0261 (11)
H40.27110.29820.66430.031*
C50.3216 (7)0.2053 (2)0.5922 (7)0.0201 (10)
C60.5091 (8)0.2214 (2)0.6174 (8)0.0303 (12)
C70.5577 (7)0.0559 (2)0.2514 (7)0.0214 (10)
C80.5910 (9)0.0865 (3)0.1015 (8)0.0320 (12)
H8A0.68350.06000.08600.048*
H8B0.63880.13170.13620.048*
H8C0.47190.08750.01310.048*
C90.1852 (8)0.0478 (2)0.2547 (7)0.0228 (10)
C100.0014 (8)0.0787 (3)0.1106 (8)0.0324 (12)
H10A0.00970.07230.00990.049*
H10B0.10560.05750.11440.049*
H10C0.00140.12610.13490.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0166 (4)0.0163 (3)0.0162 (4)0.0018 (2)0.0029 (3)0.0010 (2)
N10.0151 (18)0.0218 (18)0.018 (2)0.0014 (16)0.0041 (16)0.0018 (16)
N20.029 (3)0.028 (2)0.079 (4)0.007 (2)0.031 (3)0.014 (2)
O10.038 (2)0.0219 (16)0.031 (2)0.0029 (16)0.0185 (18)0.0034 (15)
O20.034 (2)0.0291 (18)0.0237 (19)0.0055 (16)0.0161 (17)0.0009 (15)
O30.0231 (18)0.0252 (17)0.034 (2)0.0019 (17)0.0034 (17)0.0079 (16)
O40.0175 (17)0.0260 (17)0.0216 (19)0.0029 (14)0.0010 (15)0.0027 (14)
C10.019 (2)0.024 (2)0.025 (3)0.005 (2)0.005 (2)0.003 (2)
C20.019 (2)0.028 (2)0.031 (3)0.000 (2)0.010 (2)0.001 (2)
C30.023 (3)0.024 (2)0.029 (3)0.006 (2)0.010 (2)0.001 (2)
C40.028 (3)0.020 (2)0.029 (3)0.003 (2)0.013 (2)0.000 (2)
C50.020 (2)0.018 (2)0.019 (2)0.0016 (19)0.007 (2)0.0021 (18)
C60.034 (3)0.018 (2)0.042 (3)0.004 (2)0.021 (3)0.002 (2)
C70.019 (2)0.022 (2)0.016 (2)0.003 (2)0.004 (2)0.0023 (18)
C80.040 (3)0.030 (3)0.023 (3)0.006 (2)0.013 (2)0.001 (2)
C90.022 (3)0.022 (2)0.014 (2)0.003 (2)0.001 (2)0.0004 (19)
C100.024 (3)0.029 (3)0.026 (3)0.005 (2)0.003 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu1—O11.975 (4)C1—H10.9300
Cu1—O2i1.980 (4)C2—C31.366 (7)
Cu1—O3i1.941 (4)C2—H20.9300
Cu1—O41.952 (4)C3—C41.380 (7)
Cu1—N12.235 (4)C3—H30.9300
Cu1—Cu1i2.5997 (15)C4—C51.389 (7)
N1—C11.334 (6)C4—H40.9300
N1—C51.352 (6)C5—C61.435 (7)
N2—C61.133 (7)C7—C81.507 (7)
O1—C71.279 (6)C8—H8A0.9600
O2—C71.248 (6)C8—H8B0.9600
O2—Cu1i1.980 (4)C8—H8C0.9600
O3—C91.261 (7)C9—C101.496 (7)
O3—Cu1i1.941 (4)C10—H10A0.9600
O4—C91.259 (6)C10—H10B0.9600
C1—C21.379 (7)C10—H10C0.9600
O3i—Cu1—O4169.17 (14)C2—C3—C4119.6 (5)
O3i—Cu1—O190.43 (17)C2—C3—H3120.2
O4—Cu1—O190.23 (16)C4—C3—H3120.2
O3i—Cu1—O2i90.11 (17)C3—C4—C5117.9 (5)
O4—Cu1—O2i87.28 (16)C3—C4—H4121.1
O1—Cu1—O2i169.40 (14)C5—C4—H4121.1
O3i—Cu1—N196.27 (15)N1—C5—C4123.2 (4)
O4—Cu1—N194.34 (15)N1—C5—C6118.4 (4)
O1—Cu1—N198.10 (15)C4—C5—C6118.4 (4)
O2i—Cu1—N192.35 (14)N2—C6—C5175.1 (6)
O3i—Cu1—Cu1i83.16 (11)O2—C7—O1125.0 (4)
O4—Cu1—Cu1i86.12 (11)O2—C7—C8116.7 (4)
O1—Cu1—Cu1i85.76 (11)O1—C7—C8118.3 (4)
O2i—Cu1—Cu1i83.80 (10)C7—C8—H8A109.5
N1—Cu1—Cu1i176.10 (10)C7—C8—H8B109.5
C1—N1—C5117.0 (4)H8A—C8—H8B109.5
C1—N1—Cu1115.2 (3)C7—C8—H8C109.5
C5—N1—Cu1127.4 (3)H8A—C8—H8C109.5
C7—O1—Cu1121.3 (3)H8B—C8—H8C109.5
C7—O2—Cu1i124.0 (3)O4—C9—O3125.1 (5)
C9—O3—Cu1i124.7 (3)O4—C9—C10117.9 (5)
C9—O4—Cu1120.8 (3)O3—C9—C10117.0 (4)
N1—C1—C2123.3 (5)C9—C10—H10A109.5
N1—C1—H1118.4C9—C10—H10B109.5
C2—C1—H1118.4H10A—C10—H10B109.5
C3—C2—C1119.1 (4)C9—C10—H10C109.5
C3—C2—H2120.5H10A—C10—H10C109.5
C1—C2—H2120.5H10B—C10—H10C109.5
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2ii0.932.603.196 (9)122
C8—H8B···N2iii0.962.573.491 (8)160
C10—H10A···O4iv0.962.543.381 (7)147
Symmetry codes: (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y, z.
Selected bond lengths (Å) top
Cu1—O11.975 (4)Cu1—O41.952 (4)
Cu1—O2i1.980 (4)Cu1—N12.235 (4)
Cu1—O3i1.941 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2ii0.932.603.196 (9)122
C8—H8B···N2iii0.962.573.491 (8)160
C10—H10A···O4iv0.962.543.381 (7)147
Symmetry codes: (ii) x1, y, z; (iii) x, y+1/2, z1/2; (iv) x, y, z.
 

Acknowledgements

This work was supported by Hefei University of Technology, China. The data were collected at the University of Science and Technology of China.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChang, H.-C., Cole, J. M., Lin, T.-C. & Waddell, P. G. (2011). Acta Cryst. E67, m691.  Web of Science CSD CrossRef IUCr Journals
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1077–m1078.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds