organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 1| January 2014| Pages o78-o79

2-{N-[(2,3,4,9-Tetra­hydro-1H-carbazol-3-yl)meth­yl]methyl­sulfonamido}­ethyl methane­sulfonate

aDokuz Eylül University, Faculty of Arts and Sciences, Department of Chemistry, Tınaztepe, 35160 Buca, İzmir, Turkey, bUniversité de Montréal, Département de Chimie, H3C 3J7, Montréal, Québec, Canada, cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 9 December 2013; accepted 17 December 2013; online 21 December 2013)

In the title compound, C17H24N2O5S2, the indole ring system is nearly planar [maximum deviation = 0.032 (1) Å] and the cyclo­hexene ring has a half-chair conformation. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into a chain running along the b-axis direction. Weak C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions are observed between the chains.

Related literature

For tetra­hydro­carbazole systems present in the framework of a number of indole-type alkaloids of biological inter­est, see: Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.]). For the anti­tumor activity of tetra­hydro­carbazoles containing an amine unit, see: Chen et al. (2009[Chen, J., Lou, J., Liu, T., Wu, R., Dong, X., He, Q., Yang, B. & Hu, Y. (2009). Arch. Pharm. Chem. 342, 165-167.]). For the most potent drugs, such as ellipcitine and olivacine, for the treatment of a variety of cancers, see: Pelletier (1970[Pelletier, S. W. (1970). Chemistry of Alkaloids, pp. 1-9. New York: Nostrand Reinhold Company.]). For the use of tetra­hydro­carbazoles in the synthesis of pyridocarbazoles, see: Knölker & Reddy (2002[Knölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.]). For related structures, see: Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239-1242.]); Gündoğdu et al. (2011[Gündoğdu, C., Göçmentürk, M., Ergün, Y., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1470-o1471.]); Göçmen­türk et al. (2013[Göçmentürk, M., Ergün, Y., Mougang-Soume, B., Çaylak Delibaş, N. & Hökelek, T. (2013). Acta Cryst. E69, o1797-o1798.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24N2O5S2

  • Mr = 400.50

  • Monoclinic, P 21 /c

  • a = 5.4399 (2) Å

  • b = 18.0322 (6) Å

  • c = 19.0103 (6) Å

  • β = 98.973 (2)°

  • V = 1841.96 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.90 mm−1

  • T = 150 K

  • 0.18 × 0.16 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.623, Tmax = 0.686

  • 47392 measured reflections

  • 3472 independent reflections

  • 3357 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.05

  • 3472 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4a/C5a/C8a/N9/C9a ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O2i 0.83 (2) 2.17 (2) 2.9804 (16) 166 (2)
C11—H11C⋯O4ii 0.98 2.45 3.171 (2) 130
C13—H13A⋯O5iii 0.99 2.46 3.4148 (19) 161
C14—H14B⋯O5iv 0.98 2.42 3.317 (2) 152
C11—H11ACg2ii 0.98 2.95 3.6705 (19) 131
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Patır et al., 1997). Nitrogen containing heterocyclic compounds are encountered in a very large number of groups of organic compounds. They play a vital role in the metabolism of all living cells, which are widely distributed in nature and are essential to life. One of them pyridocarbazoles such as ellipcitine and olivacine are some of the most potent drugs for the treatment of a variety of cancers (Pelletier, 1970). Tetrahydrocarbazoles have been used as key compounds for the syntheses of various pyridocarbazoles (Knölker & Reddy, 2002). Amine moiety containing tetrahydrocarbazoles have also been showed antitumor activity (Chen et al., 2009). The present study was undertaken to ascertain the crystal structure of the title compound.

The molecule of the title compound contains a carbazole skeleton with methyl sulfonamide and ethyl methanesulfonate groups, (Fig. 1). In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of 0.032 (1) Å for atom N9] with dihedral angle of B/C = 2.16 (5)°. Ring A (C1—C4/C4a/C9a) adopts half-chair conformation, as in ethyl 4-oxo-2,3,4,9-tetrahydro-1-H-carbazole-3-carboxylate (Gündoğdu et al., 2011) and 2-{4-Methyl-N-[(2,3,4,9-tetrahydro-1H-carbazol-3-yl)methyl]benzenesulfonamido} ethyl 4-methylbenzenesulfonate (Göçmentürk et al., 2013). Ring A has a pseudo twofold axis running through the midpoints of C2–C3 and C4a–C9a bonds.

In the crystal, N—H···O hydrogen bonds (Table 1) link the molecules into a chain running along the b-axis direction (Fig. 2), and weak C—H···O hydrogen bonds and a weak C—H···π interaction (Table 1) are observed between the chains.

Related literature top

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Saxton (1983). For the antitumor activity of tetrahydrocarbazoles containing an amine unit, see: Chen et al. (2009). For the most potent drugs, such as ellipcitine and olivacine, for the treatment of a variety of cancers, see: Pelletier (1970). For the use of tetrahydrocarbazoles in the synthesis of pyridocarbazoles, see: Knölker & Reddy (2002). For related structures, see: Patır et al. (1997); Gündoğdu et al. (2011); Göçmentürk et al. (2013).

Experimental top

For the preparation of the title compound, (I), a solution of 2-((2,3,4,9 -tetrahydro-1H-carbazole-3-yl)methylamino)ethanol (1.0 g, 4.1 mmol) in pyridine (5 ml) was cooled to 273 K. Then, methanesulphonyl chloride (1.0 g, 9.0 mmol) was added dropwise. The mixture was stirred for 18 h at room temperature, and then washed with hydrochloric acid (10%). The organic layer was extracted with chloroform and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane (1:1). The solvent was evaporated under reduced pressure and the residue was recrystallized from methanol (yield; 1.1 g, 67%, m.p. 404 K).

Refinement top

H9 atom is located in a difference Fourier synthesis and refined isotropically. The remaining C-bound H-atoms were positioned geometrically with C—H = 0.95, 1.00, 0.99 and 0.98 Å, for aromatic, methine, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. Only the N—H···O hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].
2-{N-[(2,3,4,9-Tetrahydro-1H-carbazol-3-yl)methyl]methylsulfonamido}ethyl methanesulfonate top
Crystal data top
C17H24N2O5S2F(000) = 848
Mr = 400.50Dx = 1.444 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9016 reflections
a = 5.4399 (2) Åθ = 3.4–69.5°
b = 18.0322 (6) ŵ = 2.90 mm1
c = 19.0103 (6) ÅT = 150 K
β = 98.973 (2)°Plate, colourless
V = 1841.96 (11) Å30.18 × 0.16 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3472 independent reflections
Radiation source: fine-focus sealed tube3357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 69.8°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.623, Tmax = 0.686k = 2021
47392 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.6777P]
where P = (Fo2 + 2Fc2)/3
3472 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C17H24N2O5S2V = 1841.96 (11) Å3
Mr = 400.50Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.4399 (2) ŵ = 2.90 mm1
b = 18.0322 (6) ÅT = 150 K
c = 19.0103 (6) Å0.18 × 0.16 × 0.13 mm
β = 98.973 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3472 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3357 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.686Rint = 0.054
47392 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
3472 reflectionsΔρmin = 0.36 e Å3
241 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19263 (6)0.204476 (18)0.209478 (18)0.02367 (12)
S20.21420 (6)0.077279 (19)0.091542 (18)0.02505 (12)
O10.0230 (2)0.20118 (6)0.25961 (6)0.0344 (3)
O20.0933 (2)0.21216 (6)0.13524 (6)0.0339 (3)
O30.34759 (19)0.01082 (6)0.13520 (5)0.0276 (2)
O40.3080 (2)0.14168 (6)0.12962 (6)0.0368 (3)
O50.2426 (2)0.06975 (6)0.01834 (6)0.0328 (3)
N10.3567 (2)0.12840 (6)0.21645 (6)0.0218 (2)
N90.2800 (2)0.16928 (7)0.40969 (7)0.0264 (3)
H90.161 (4)0.1983 (11)0.4018 (10)0.035 (5)*
C10.1172 (3)0.07536 (8)0.31395 (8)0.0252 (3)
H1A0.13700.10420.27090.030*
H1B0.05490.08240.32360.030*
C20.1640 (2)0.00717 (8)0.30133 (8)0.0243 (3)
H2A0.09270.03690.33700.029*
H2B0.07680.02130.25360.029*
C30.4407 (2)0.02574 (7)0.30626 (7)0.0210 (3)
H30.51350.00550.27130.025*
C40.5787 (2)0.00923 (7)0.38158 (7)0.0215 (3)
H4A0.53460.04710.41520.026*
H4B0.76060.01170.38170.026*
C4A0.5100 (3)0.06626 (7)0.40525 (7)0.0217 (3)
C50.8579 (3)0.10872 (8)0.50849 (8)0.0265 (3)
H50.96630.06760.50710.032*
C5A0.6340 (3)0.11314 (7)0.46082 (7)0.0229 (3)
C60.9185 (3)0.16495 (9)0.55752 (8)0.0315 (3)
H61.07040.16240.58980.038*
C70.7590 (3)0.22570 (9)0.56039 (8)0.0338 (4)
H70.80290.26280.59560.041*
C80.5396 (3)0.23279 (8)0.51321 (8)0.0318 (3)
H80.43300.27430.51490.038*
C8A0.4810 (3)0.17645 (8)0.46293 (7)0.0253 (3)
C9A0.2978 (3)0.10205 (8)0.37574 (7)0.0233 (3)
C100.4772 (3)0.10741 (7)0.28916 (7)0.0228 (3)
H10A0.65760.11800.29400.027*
H10B0.40780.13840.32430.027*
C110.4043 (3)0.27709 (9)0.23392 (10)0.0360 (4)
H11A0.52650.27860.20110.054*
H11B0.31420.32430.23170.054*
H11C0.49020.26890.28260.054*
C120.4941 (3)0.11271 (8)0.15714 (8)0.0251 (3)
H12A0.53000.16000.13440.030*
H12B0.65510.08920.17620.030*
C130.3519 (3)0.06250 (8)0.10170 (8)0.0264 (3)
H13A0.43560.05980.05910.032*
H13B0.18040.08120.08710.032*
C140.0999 (3)0.06534 (9)0.09937 (9)0.0344 (4)
H14B0.15770.01720.07920.052*
H14A0.19870.10500.07350.052*
H14C0.11910.06700.14980.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02243 (19)0.02128 (19)0.0264 (2)0.00275 (12)0.00095 (14)0.00032 (12)
S20.0270 (2)0.0233 (2)0.0241 (2)0.00371 (12)0.00149 (14)0.00101 (12)
O10.0284 (5)0.0383 (6)0.0378 (6)0.0057 (4)0.0092 (5)0.0024 (5)
O20.0369 (6)0.0322 (6)0.0296 (6)0.0095 (5)0.0040 (5)0.0024 (4)
O30.0334 (6)0.0244 (5)0.0238 (5)0.0008 (4)0.0004 (4)0.0004 (4)
O40.0429 (6)0.0259 (6)0.0385 (6)0.0081 (5)0.0030 (5)0.0022 (5)
O50.0395 (6)0.0337 (6)0.0256 (6)0.0008 (5)0.0062 (5)0.0050 (4)
N10.0236 (6)0.0200 (6)0.0217 (6)0.0010 (4)0.0029 (4)0.0018 (4)
N90.0280 (6)0.0215 (6)0.0297 (7)0.0076 (5)0.0042 (5)0.0005 (5)
C10.0230 (7)0.0234 (7)0.0287 (7)0.0035 (5)0.0021 (6)0.0012 (5)
C20.0210 (6)0.0231 (7)0.0283 (7)0.0006 (5)0.0020 (5)0.0005 (5)
C30.0216 (6)0.0190 (6)0.0227 (7)0.0001 (5)0.0039 (5)0.0003 (5)
C40.0212 (6)0.0207 (6)0.0226 (7)0.0024 (5)0.0032 (5)0.0003 (5)
C4A0.0237 (6)0.0202 (6)0.0218 (7)0.0015 (5)0.0059 (5)0.0002 (5)
C50.0295 (7)0.0254 (7)0.0241 (7)0.0012 (6)0.0026 (6)0.0006 (5)
C5A0.0276 (7)0.0212 (7)0.0207 (6)0.0000 (5)0.0065 (5)0.0010 (5)
C60.0363 (8)0.0309 (8)0.0255 (7)0.0042 (6)0.0008 (6)0.0002 (6)
C70.0492 (9)0.0253 (7)0.0262 (7)0.0048 (7)0.0045 (7)0.0061 (6)
C80.0442 (9)0.0218 (7)0.0304 (8)0.0029 (6)0.0090 (7)0.0024 (6)
C8A0.0317 (7)0.0218 (7)0.0235 (7)0.0018 (6)0.0073 (6)0.0013 (5)
C9A0.0246 (7)0.0210 (7)0.0251 (7)0.0019 (5)0.0062 (5)0.0009 (5)
C100.0241 (7)0.0209 (7)0.0224 (7)0.0014 (5)0.0004 (5)0.0013 (5)
C110.0378 (9)0.0207 (7)0.0474 (10)0.0012 (6)0.0001 (7)0.0010 (7)
C120.0243 (7)0.0255 (7)0.0262 (7)0.0000 (5)0.0062 (6)0.0001 (5)
C130.0310 (7)0.0244 (7)0.0239 (7)0.0016 (6)0.0047 (6)0.0016 (5)
C140.0279 (8)0.0381 (8)0.0371 (9)0.0018 (6)0.0049 (6)0.0067 (7)
Geometric parameters (Å, º) top
S1—O11.4273 (12)C4A—C9A1.365 (2)
S1—O21.4370 (11)C5—C61.382 (2)
S1—N11.6306 (12)C5—H50.9500
S1—C111.7576 (16)C5A—C4A1.4363 (19)
S2—O31.5697 (10)C5A—C51.402 (2)
S2—O41.4205 (11)C5A—C8A1.4169 (19)
S2—O51.4303 (11)C6—C71.404 (2)
S2—C141.7516 (16)C6—H60.9500
O3—C131.4693 (17)C7—C81.383 (2)
N1—C101.4836 (17)C7—H70.9500
N1—C121.4742 (18)C8—C8A1.397 (2)
N9—C8A1.3753 (19)C8—H80.9500
N9—C9A1.3837 (18)C9A—C11.489 (2)
N9—H90.83 (2)C10—H10A0.9900
C1—C21.5350 (19)C10—H10B0.9900
C1—H1A0.9900C11—H11A0.9800
C1—H1B0.9900C11—H11B0.9800
C2—C31.5304 (18)C11—H11C0.9800
C2—H2A0.9900C12—C131.508 (2)
C2—H2B0.9900C12—H12A0.9900
C3—C41.5386 (18)C12—H12B0.9900
C3—C101.5278 (18)C13—H13A0.9900
C3—H31.0000C13—H13B0.9900
C4—H4A0.9900C14—H14B0.9800
C4—H4B0.9900C14—H14A0.9800
C4A—C41.4992 (18)C14—H14C0.9800
O1—S1—O2118.47 (7)C5—C5A—C4A134.64 (13)
O1—S1—N1108.26 (6)C5—C5A—C8A118.82 (13)
O1—S1—C11108.63 (8)C8A—C5A—C4A106.54 (12)
O2—S1—N1106.15 (6)C5—C6—C7120.98 (14)
O2—S1—C11108.56 (8)C5—C6—H6119.5
N1—S1—C11106.12 (7)C7—C6—H6119.5
O3—S2—C14103.76 (7)C6—C7—H7119.2
O4—S2—O3104.78 (6)C8—C7—C6121.55 (14)
O4—S2—O5119.25 (7)C8—C7—H7119.2
O4—S2—C14109.56 (8)C7—C8—C8A117.27 (14)
O5—S2—O3109.32 (6)C7—C8—H8121.4
O5—S2—C14109.02 (8)C8A—C8—H8121.4
C13—O3—S2119.68 (9)N9—C8A—C5A107.83 (12)
C10—N1—S1116.55 (9)N9—C8A—C8129.95 (14)
C12—N1—S1115.83 (9)C8—C8A—C5A122.21 (14)
C12—N1—C10117.43 (11)N9—C9A—C1124.46 (12)
C8A—N9—C9A108.69 (12)C4A—C9A—N9109.80 (13)
C8A—N9—H9125.7 (13)C4A—C9A—C1125.68 (13)
C9A—N9—H9125.3 (13)N1—C10—C3113.02 (11)
C2—C1—H1A109.8N1—C10—H10A109.0
C2—C1—H1B109.8N1—C10—H10B109.0
C9A—C1—C2109.37 (11)C3—C10—H10A109.0
C9A—C1—H1A109.8C3—C10—H10B109.0
C9A—C1—H1B109.8H10A—C10—H10B107.8
H1A—C1—H1B108.2S1—C11—H11A109.5
C1—C2—H2A109.0S1—C11—H11B109.5
C1—C2—H2B109.0S1—C11—H11C109.5
C3—C2—C1112.84 (11)H11A—C11—H11B109.5
C3—C2—H2A109.0H11A—C11—H11C109.5
C3—C2—H2B109.0H11B—C11—H11C109.5
H2A—C2—H2B107.8N1—C12—C13112.57 (11)
C2—C3—C4110.32 (11)N1—C12—H12A109.1
C2—C3—H3108.9N1—C12—H12B109.1
C4—C3—H3108.9C13—C12—H12A109.1
C10—C3—C2110.92 (11)C13—C12—H12B109.1
C10—C3—C4108.89 (11)H12A—C12—H12B107.8
C10—C3—H3108.9O3—C13—C12106.16 (11)
C3—C4—H4A109.6O3—C13—H13A110.5
C3—C4—H4B109.6O3—C13—H13B110.5
C4A—C4—C3110.28 (11)C12—C13—H13A110.5
C4A—C4—H4A109.6C12—C13—H13B110.5
C4A—C4—H4B109.6H13A—C13—H13B108.7
H4A—C4—H4B108.1S2—C14—H14B109.5
C5A—C4A—C4130.15 (13)S2—C14—H14A109.5
C9A—C4A—C5A107.10 (12)S2—C14—H14C109.5
C9A—C4A—C4122.73 (13)H14B—C14—H14A109.5
C5A—C5—H5120.5H14B—C14—H14C109.5
C6—C5—C5A119.09 (14)H14A—C14—H14C109.5
C6—C5—H5120.5
O1—S1—N1—C1050.95 (11)C5A—C4A—C4—C3161.46 (13)
O1—S1—N1—C12164.56 (10)C9A—C4A—C4—C320.88 (18)
O2—S1—N1—C10179.12 (10)C4—C4A—C9A—N9178.07 (12)
O2—S1—N1—C1236.39 (11)C4—C4A—C9A—C14.8 (2)
C11—S1—N1—C1065.50 (12)C5A—C4A—C9A—N90.06 (16)
C11—S1—N1—C1278.99 (12)C5A—C4A—C9A—C1177.07 (13)
O4—S2—O3—C13162.57 (10)C5A—C5—C6—C70.4 (2)
O5—S2—O3—C1333.66 (12)C5—C5A—C4A—C43.9 (3)
C14—S2—O3—C1382.53 (11)C5—C5A—C4A—C9A178.12 (16)
S2—O3—C13—C12179.57 (9)C8A—C5A—C4A—C4176.65 (13)
S1—N1—C10—C3133.41 (10)C8A—C5A—C4A—C9A1.29 (15)
C12—N1—C10—C382.67 (14)C4A—C5A—C5—C6178.55 (15)
S1—N1—C12—C1394.59 (12)C8A—C5A—C5—C62.1 (2)
C10—N1—C12—C13121.24 (13)C4A—C5A—C8A—N92.05 (15)
C9A—N9—C8A—C5A2.05 (16)C4A—C5A—C8A—C8177.19 (13)
C9A—N9—C8A—C8177.12 (15)C5—C5A—C8A—N9177.48 (13)
C8A—N9—C9A—C1178.42 (13)C5—C5A—C8A—C83.3 (2)
C8A—N9—C9A—C4A1.25 (16)C5—C6—C7—C81.9 (2)
C9A—C1—C2—C343.77 (16)C6—C7—C8—C8A0.8 (2)
C1—C2—C3—C462.50 (15)C7—C8—C8A—N9179.12 (15)
C1—C2—C3—C10176.76 (11)C7—C8—C8A—C5A1.8 (2)
C2—C3—C4—C4A47.92 (15)N9—C9A—C1—C2167.67 (13)
C10—C3—C4—C4A169.87 (11)C4A—C9A—C1—C215.6 (2)
C2—C3—C10—N160.12 (15)N1—C12—C13—O369.55 (14)
C4—C3—C10—N1178.29 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4a/C5a/C8a/N9/C9a ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···O2i0.83 (2)2.17 (2)2.9804 (16)166 (2)
C11—H11C···O4ii0.982.453.171 (2)130
C13—H13A···O5iii0.992.463.4148 (19)161
C14—H14B···O5iv0.982.423.317 (2)152
C11—H11A···Cg2ii0.982.953.6705 (19)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4a/C5a/C8a/N9/C9a ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···O2i0.83 (2)2.17 (2)2.9804 (16)166 (2)
C11—H11C···O4ii0.982.453.171 (2)130
C13—H13A···O5iii0.992.463.4148 (19)161
C14—H14B···O5iv0.982.423.317 (2)152
C11—H11A···Cg2ii0.982.953.6705 (19)131
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z.
 

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, J., Lou, J., Liu, T., Wu, R., Dong, X., He, Q., Yang, B. & Hu, Y. (2009). Arch. Pharm. Chem. 342, 165–167.  Web of Science CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGöçmentürk, M., Ergün, Y., Mougang-Soume, B., Çaylak Delibaş, N. & Hökelek, T. (2013). Acta Cryst. E69, o1797–o1798.  CSD CrossRef IUCr Journals
First citationGündoğdu, C., Göçmentürk, M., Ergün, Y., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1470–o1471.  Web of Science CSD CrossRef IUCr Journals
First citationKnölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427.  Web of Science PubMed
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239–1242.
First citationPelletier, S. W. (1970). Chemistry of Alkaloids, pp. 1–9. New York: Nostrand Reinhold Company.
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 1| January 2014| Pages o78-o79
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds