organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(4-hy­dr­oxy­phen­yl)-6-methyl-2-sulfanyl­­idene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 24 January 2014; accepted 8 February 2014; online 15 February 2014)

In the title mol­ecule, C13H14N2O3S, the di­hydro­pyrimidine ring is in a flattened sofa conformation, with the methine C atom forming the flap. The dihedral angle between the mean plane of the five essentially planar atoms of the di­hydro­pyrimidine ring [maximum deviation = 0.056 (4) Å] and the benzene ring is 89.4 (2)°. The O atom of the carbonyl group is in a trans conformation with respect to the C=C bond of the di­hydro­pyrimidine ring. In the crystal, N—H⋯O and O—H⋯S hydrogen bonds connect mol­ecules, forming a two-dimensional network parallel to (001).

Related literature

For general background and the biological activity of di­hydro­pyrimidines, see: Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); Jauk et al. (2000[Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227-239.]); Mayer et al. (1999[Mayer, T. U., Haggarty, S. J., King, R. W., Kapoor, T. M., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971-974.]); For a related structure, see: Liu et al. (2008[Liu, B., Zhang, M., Cui, N., Zhu, J. & Cui, J. (2008). Acta Cryst. E64, o261.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O3S

  • Mr = 278.32

  • Triclinic, [P \overline 1]

  • a = 7.3016 (12) Å

  • b = 7.6855 (13) Å

  • c = 11.4706 (19) Å

  • α = 88.337 (3)°

  • β = 84.870 (3)°

  • γ = 89.937 (3)°

  • V = 640.84 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.955, Tmax = 0.960

  • 3897 measured reflections

  • 2703 independent reflections

  • 2084 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.224

  • S = 1.22

  • 2703 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.06 2.923 (5) 174
N2—H2⋯O3ii 0.86 2.14 2.929 (4) 152
O3—H3⋯S1iii 0.82 2.36 3.122 (3) 155
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound is a member of the dihydropyrimidines (DHPM) (Kappe, 2000), which have emerged as important target molecules for therapeutic and pharmacological properties such as anticarcinogenic (Mayer et al., 1999) and more recently these compounds have emerged as the integral backbones of several calcium channel modulators (Jauk et al., 2000), anti-hypertensive agents. The title compound was chosen for X-ray diffraction studies with the intention of eliciting structural information which could facilitate further understanding of structural requirements for improved biological activity.

The molecular structure of the title compound is shown in Fig. 1. The dihydropyrimidine ring is in a flattened sofa conformation with atom C4 forming the flap. The dihedral angle between the mean plane of the five essentially planar atoms (N1/N2/C5/C6/C7) of the dihydropyrimidine ring [maximum deviation 0.056 (4) Å for C4] and the benzene ring (C8–C13) is 89.4 (2)°. The oxygen atom of the carbonyl group is in a trans configuration with respect to the C5C6 bond of the dihydropyrimidine ring. In the crystal, N—H···O and O—H···S hydrogen bonds connect molecules forming a two-dimensional network parallel to (001) (Fig. 2).

Related literature top

For general background and the biological activity of dihydropyrimidines, see: Kappe (2000); Jauk et al. (2000); Mayer et al. (1999); For a related structure, see: Liu et al. (2008).

Experimental top

A mixture of methyl acetoacetate (3.12 g, 25 mmol), 4-hydroxy benzaldehyde (3.02 g, 20 mmol), thiourea (1.83 g, 24 mmol) and LiBr (0.175 g, 2mM) in acetonitrile (25 ml) was heated under reflux for 5 h. After cooling, the reaction mixture was poured onto crushed ice. Stirring was continued for several minutes. The solid product was filtered, washed with cold water, dried and recrystallized from ethanol (yield 85%; m.p.485 K). Single crystals were grown from a chloroform solution of the title compound by slow evaporation at room temperature.

Refinement top

H atoms were placed in calculated positions in the riding-model approximation with N—H = 0.86° A, O—H = 0.82° A, C—H = 0.93, 0.96 and 0.98 Å for aryl, methyl and methine H-atoms respectively, with Uiso(H) = 1.2Ueq(N/C) or 1.5Ueq(Cmethyl/O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Methyl 4-(4-hydroxyphenyl)-6-methyl-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C13H14N2O3SZ = 2
Mr = 278.32F(000) = 292
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3016 (12) ÅCell parameters from 2703 reflections
b = 7.6855 (13) Åθ = 1.8–27.0°
c = 11.4706 (19) ŵ = 0.26 mm1
α = 88.337 (3)°T = 296 K
β = 84.870 (3)°Block, colourless
γ = 89.937 (3)°0.18 × 0.16 × 0.16 mm
V = 640.84 (18) Å3
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2703 independent reflections
Radiation source: fine-focus sealed tube2084 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.955, Tmax = 0.960k = 99
3897 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0743P)2 + 1.681P]
where P = (Fo2 + 2Fc2)/3
2703 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C13H14N2O3Sγ = 89.937 (3)°
Mr = 278.32V = 640.84 (18) Å3
Triclinic, P1Z = 2
a = 7.3016 (12) ÅMo Kα radiation
b = 7.6855 (13) ŵ = 0.26 mm1
c = 11.4706 (19) ÅT = 296 K
α = 88.337 (3)°0.18 × 0.16 × 0.16 mm
β = 84.870 (3)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2703 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2084 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.960Rint = 0.020
3897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.22Δρmax = 0.76 e Å3
2703 reflectionsΔρmin = 0.65 e Å3
175 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3658 (6)0.2646 (6)0.0479 (4)0.0338 (9)
H1A0.45230.32200.10420.051*
H1B0.24550.31270.05410.051*
H1C0.36370.14240.06270.051*
C20.7615 (6)0.2492 (5)0.0356 (4)0.0304 (9)
C30.9034 (6)0.1552 (8)0.1446 (4)0.0438 (12)
H3A0.97460.26010.15690.066*
H3B0.87110.11510.21860.066*
H3C0.97440.06750.10790.066*
C40.6180 (5)0.2981 (5)0.2393 (4)0.0278 (8)
H40.73200.36270.24620.033*
C50.5918 (5)0.2811 (5)0.1099 (4)0.0270 (8)
C60.4216 (5)0.2909 (5)0.0729 (4)0.0299 (9)
C70.2938 (6)0.3954 (5)0.2612 (4)0.0294 (9)
C80.6324 (5)0.1204 (5)0.3004 (3)0.0259 (8)
C90.4829 (6)0.0075 (5)0.3100 (4)0.0331 (10)
H90.37320.04370.28180.040*
C100.4930 (5)0.1559 (5)0.3601 (4)0.0331 (10)
H100.39050.22840.36650.040*
C110.6558 (5)0.2129 (5)0.4010 (3)0.0280 (8)
C120.8074 (6)0.1033 (6)0.3943 (4)0.0365 (10)
H120.91660.13960.42320.044*
C130.7924 (6)0.0628 (6)0.3433 (4)0.0335 (9)
H130.89380.13670.33810.040*
N10.2744 (5)0.3334 (5)0.1523 (3)0.0313 (8)
H10.16500.32000.13180.038*
N20.4641 (4)0.3976 (4)0.2940 (3)0.0265 (7)
H20.48510.46200.35140.032*
O10.9147 (4)0.2737 (5)0.0673 (3)0.0431 (8)
O20.7382 (4)0.1894 (4)0.0701 (3)0.0372 (8)
O30.6613 (4)0.3807 (4)0.4445 (3)0.0308 (7)
H30.74890.39190.48400.046*
S10.10843 (14)0.46706 (14)0.34469 (10)0.0335 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.039 (2)0.035 (2)0.0028 (17)0.0073 (17)0.0051 (18)
C20.027 (2)0.030 (2)0.034 (2)0.0000 (16)0.0038 (16)0.0000 (17)
C30.028 (2)0.071 (4)0.031 (2)0.000 (2)0.0023 (18)0.010 (2)
C40.0247 (19)0.025 (2)0.034 (2)0.0010 (15)0.0027 (15)0.0020 (16)
C50.0235 (19)0.025 (2)0.032 (2)0.0022 (15)0.0016 (15)0.0039 (16)
C60.0227 (19)0.032 (2)0.035 (2)0.0038 (15)0.0033 (16)0.0035 (17)
C70.029 (2)0.0203 (19)0.039 (2)0.0006 (15)0.0050 (17)0.0053 (16)
C80.0261 (19)0.026 (2)0.026 (2)0.0014 (15)0.0001 (15)0.0064 (15)
C90.027 (2)0.026 (2)0.047 (3)0.0016 (16)0.0090 (18)0.0005 (18)
C100.0230 (19)0.029 (2)0.048 (3)0.0071 (16)0.0010 (17)0.0092 (18)
C110.029 (2)0.029 (2)0.026 (2)0.0008 (16)0.0013 (15)0.0019 (16)
C120.028 (2)0.036 (2)0.045 (3)0.0038 (17)0.0042 (18)0.0016 (19)
C130.027 (2)0.036 (2)0.038 (2)0.0079 (17)0.0044 (17)0.0040 (18)
N10.0225 (17)0.0339 (19)0.038 (2)0.0018 (14)0.0019 (14)0.0116 (15)
N20.0163 (15)0.0261 (17)0.038 (2)0.0022 (12)0.0056 (13)0.0087 (14)
O10.0195 (14)0.071 (2)0.0393 (19)0.0030 (14)0.0015 (12)0.0107 (16)
O20.0239 (15)0.056 (2)0.0317 (17)0.0016 (13)0.0015 (12)0.0081 (14)
O30.0323 (16)0.0258 (15)0.0347 (17)0.0018 (12)0.0045 (12)0.0000 (12)
S10.0259 (5)0.0338 (6)0.0405 (7)0.0020 (4)0.0001 (4)0.0079 (4)
Geometric parameters (Å, º) top
C1—C61.498 (6)C7—N21.331 (5)
C1—H1A0.9600C7—N11.370 (5)
C1—H1B0.9600C7—S11.688 (4)
C1—H1C0.9600C8—C131.376 (6)
C2—O11.223 (5)C8—C91.390 (5)
C2—O21.334 (5)C9—C101.370 (6)
C2—C51.465 (6)C9—H90.9300
C3—O21.443 (5)C10—C111.382 (6)
C3—H3A0.9600C10—H100.9300
C3—H3B0.9600C11—O31.371 (5)
C3—H3C0.9600C11—C121.387 (6)
C4—N21.463 (5)C12—C131.398 (6)
C4—C51.523 (6)C12—H120.9300
C4—C81.525 (6)C13—H130.9300
C4—H40.9800N1—H10.8600
C5—C61.350 (5)N2—H20.8600
C6—N11.390 (5)O3—H30.8200
C6—C1—H1A109.5N2—C7—S1123.7 (3)
C6—C1—H1B109.5N1—C7—S1120.2 (3)
H1A—C1—H1B109.5C13—C8—C9117.7 (4)
C6—C1—H1C109.5C13—C8—C4122.3 (3)
H1A—C1—H1C109.5C9—C8—C4120.0 (4)
H1B—C1—H1C109.5C10—C9—C8121.7 (4)
O1—C2—O2121.7 (4)C10—C9—H9119.2
O1—C2—C5123.1 (4)C8—C9—H9119.2
O2—C2—C5115.2 (3)C9—C10—C11120.0 (4)
O2—C3—H3A109.5C9—C10—H10120.0
O2—C3—H3B109.5C11—C10—H10120.0
H3A—C3—H3B109.5O3—C11—C10117.5 (4)
O2—C3—H3C109.5O3—C11—C12122.3 (4)
H3A—C3—H3C109.5C10—C11—C12120.1 (4)
H3B—C3—H3C109.5C11—C12—C13118.5 (4)
N2—C4—C5108.7 (3)C11—C12—H12120.7
N2—C4—C8110.9 (3)C13—C12—H12120.7
C5—C4—C8111.5 (3)C8—C13—C12122.0 (4)
N2—C4—H4108.6C8—C13—H13119.0
C5—C4—H4108.6C12—C13—H13119.0
C8—C4—H4108.6C7—N1—C6123.7 (3)
C6—C5—C2125.5 (4)C7—N1—H1118.1
C6—C5—C4120.0 (4)C6—N1—H1118.1
C2—C5—C4114.5 (3)C7—N2—C4124.6 (3)
C5—C6—N1119.0 (4)C7—N2—H2117.7
C5—C6—C1128.1 (4)C4—N2—H2117.7
N1—C6—C1112.8 (3)C2—O2—C3116.3 (3)
N2—C7—N1116.2 (4)C11—O3—H3109.5
O1—C2—C5—C6165.7 (4)C8—C9—C10—C111.0 (7)
O2—C2—C5—C614.8 (6)C9—C10—C11—O3176.6 (4)
O1—C2—C5—C416.3 (6)C9—C10—C11—C121.8 (7)
O2—C2—C5—C4163.2 (3)O3—C11—C12—C13176.8 (4)
N2—C4—C5—C625.1 (5)C10—C11—C12—C131.5 (7)
C8—C4—C5—C697.4 (4)C9—C8—C13—C120.4 (7)
N2—C4—C5—C2156.8 (3)C4—C8—C13—C12177.0 (4)
C8—C4—C5—C280.7 (4)C11—C12—C13—C80.4 (7)
C2—C5—C6—N1175.8 (4)N2—C7—N1—C66.5 (6)
C4—C5—C6—N16.3 (6)S1—C7—N1—C6172.3 (3)
C2—C5—C6—C12.8 (7)C5—C6—N1—C711.6 (6)
C4—C5—C6—C1175.1 (4)C1—C6—N1—C7167.2 (4)
N2—C4—C8—C13126.2 (4)N1—C7—N2—C417.7 (6)
C5—C4—C8—C13112.5 (4)S1—C7—N2—C4163.6 (3)
N2—C4—C8—C956.5 (5)C5—C4—N2—C732.0 (5)
C5—C4—C8—C964.8 (5)C8—C4—N2—C790.9 (5)
C13—C8—C9—C100.1 (7)O1—C2—O2—C30.1 (6)
C4—C8—C9—C10177.3 (4)C5—C2—O2—C3179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.062.923 (5)174
N2—H2···O3ii0.862.142.929 (4)152
O3—H3···S1iii0.822.363.122 (3)155
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.8602.0602.923 (5)174
N2—H2···O3ii0.8602.1402.929 (4)152
O3—H3···S1iii0.8202.3603.122 (3)155
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y, z+1.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India for financial assistance. NF thanks the UGC for a research fellowship under the RFSMS scheme.

References

First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227–239.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, B., Zhang, M., Cui, N., Zhu, J. & Cui, J. (2008). Acta Cryst. E64, o261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMayer, T. U., Haggarty, S. J., King, R. W., Kapoor, T. M., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds