organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o801-o802

Crystal structure of 7-iso­propyl-1,4a,N-tri­methyl-1,2,3,4,4a,4b,5,6,7,8,10,10a-dodeca­hydro­phenanthrene-1-carb­ox­amide

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Jiangsu Province, National Engineering Lab. for Biomass Chemical Utilization, Key and Lab. on Forest Chemical Engineering, SFA, Nanjing, 210042, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 17 September 2015; accepted 21 September 2015; online 26 September 2015)

In the title compound, C26H37NO, a new derivative of di­hydro­abietic acid, the two cyclo­hexene rings adopt half chair conformations, whereas the cyclo­hexane ring has a chair conformation. Each of the methyl groups is in an axial position with respect to the tricyclic hydro­phenanthrene residue. In the crystal packing, methyl­ene-C—H⋯π(phen­yl) inter­actions lead to supra­molecular helical chains along [010]; the amide-H atom does not form a significant inter­molecular inter­action owing to steric pressure.

1. Related literature

For crystal structure of di­hydro­abietic acid derivatives, see: Rao et al. (2009[Rao, X.-P., Song, Z.-Q., Shang, S.-B. & Wu, Y. (2009). Acta Cryst. E65, o2804.]); Rao (2010[Rao, X.-P. (2010). Acta Cryst. E66, o2725.]). For the biological activity of rosin acid derivatives, see: Fonseca et al. (2004[Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & De Clercq, E. (2004). Bioorg. Med. Chem. 12, 103-112.]); Gonzaléz et al. (2010[González, M. A., Pérez-Guaita, D., Correa-Royero, J., Zapata, B., Agudelo, L., Mesa-Arango, A. & Betancur-Galvis, L. (2010). Eur. J. Med. Chem. 45, 811-816.]); Rao et al. (2008[Rao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512-516.]); Sepulveda et al. (2005[Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmedahirschmann, G. (2005). Pharmacol. Res. 52, 429-437.]); Xing et al. (2013[Xing, Y. H., Zhang, W., Song, J. J., Zhang, Y. X., Jiang, X. X. & Wang, R. (2013). Bioorg. Med. Chem. Lett. 23, 3868-3872.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H37NO

  • Mr = 379.57

  • Orthorhombic, P 21 21 21

  • a = 26.223 (5) Å

  • b = 5.9230 (12) Å

  • c = 14.493 (3) Å

  • V = 2251.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

2.2. Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.987, Tmax = 0.993

  • 4707 measured reflections

  • 4122 independent reflections

  • 2080 reflections with I > 2σ(I)

  • Rint = 0.099

  • 3 standard reflections every 200 reflections intensity decay: 1%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.193

  • S = 1.01

  • 4122 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.97 2.82 3.705 (5) 151
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Rosin acid derivatives exhibit wide range of biological activities, such as antifungal and antitumor (Fonseca et al., 2004; Rao et al., 2008; Gonzaléz et al., 2008; Xing et al., 2013.) activities. Nitrogen derivatives of rosin acid have been studied as cytotoxic reagents and they are found to have high activity in reducing blood serum cholesterol levels in animals (Sepulveda et al., 2005). In this work, we describe the crystal structure of the title compound.

Dihydroabietic acid is one of the main component of hydrogenated rosin, which can be isolated from hydrogenated rosin by recrystallization. In this work, we have obtained the single crystal structure of the title compound, the tricyclic hydrophenanthrene nuclei had the similar crystal structure with dihydroabietic acid derivatives (Rao et al., 2009; Rao, 2010). The two cyclohexenes adopt half chair conformations, whereas the cyclohexane has a chair conformation (Fig. 1). The two methyl groups are in axial positions with respect to the tricyclic hydrophenanthrene nuclei. The structures of related dihydroabietic acid derivatives are known (Rao et al. 2009; Rao, 2010)

Related literature top

For crystal structure of dihydroabietic acid derivatives, see: Rao et al. (2009); Rao (2010). For the biological activity of rosin acid derivatives, see: Fonseca et al. (2004); Gonzaléz et al. (2010); Rao et al. (2008); Sepulveda et al. (2005); Xing et al. (2013).

Experimental top

A mixture of dihydroabietic acid (0.1 mol), oxalyl chloride (0.11 mol) and dichloromethane (40 ml) was stirred at 313 K for 4 h. After distilling off the solvent, the residue was added to aniline (0.2 mol) in toluene (60 ml) solution. The mixture was reacted for 24 h at room temperature. The solvent was distilled off, and upon recrystallization from acetone, white crystals of the title compound were obtained (yield 53%, M.p. 422 K). Single crystals were grown from acetone.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98 Å and Uiso(H) = 1.2Ueq(C) for all other H atoms. The absolute structure was not determined.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 30% probability level.
7-Isopropyl-1,4a,N-trimethyl-1,2,3,4,4a,4b,5,6,7,8,10,10a-dodecahydrophenanthrene-1-carboxamide top
Crystal data top
C26H37NODx = 1.120 Mg m3
Mr = 379.57Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 26.223 (5) Åθ = 9–13°
b = 5.9230 (12) ŵ = 0.07 mm1
c = 14.493 (3) ÅT = 293 K
V = 2251.0 (8) Å3Block, white
Z = 40.20 × 0.20 × 0.10 mm
F(000) = 832
Data collection top
Enraf–Nonius CAD-4
diffractometer
2080 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.099
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 3131
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius, 1985)
k = 07
Tmin = 0.987, Tmax = 0.993l = 017
4707 measured reflections3 standard reflections every 200 reflections
4122 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.040P)2 + 2.3P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4122 reflectionsΔρmax = 0.21 e Å3
254 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H37NOV = 2251.0 (8) Å3
Mr = 379.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 26.223 (5) ŵ = 0.07 mm1
b = 5.9230 (12) ÅT = 293 K
c = 14.493 (3) Å0.20 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2080 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius, 1985)
Rint = 0.099
Tmin = 0.987, Tmax = 0.9933 standard reflections every 200 reflections
4707 measured reflections intensity decay: 1%
4122 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
4122 reflectionsΔρmin = 0.30 e Å3
254 parametersAbsolute structure: nd
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.04603 (15)0.2213 (8)0.1116 (3)0.0541 (12)
H0A0.03400.35610.10810.065*
O0.02279 (14)0.1458 (7)0.1135 (3)0.0712 (12)
C10.04586 (18)0.1222 (9)0.0953 (3)0.0443 (13)
C20.07609 (18)0.0042 (11)0.1719 (3)0.0547 (15)
H2A0.06560.15260.17560.066*
H2B0.06850.07520.23060.066*
C30.13357 (19)0.0159 (10)0.1540 (3)0.0534 (15)
H3A0.15140.06520.20250.064*
H3B0.14450.17230.15620.064*
C40.14786 (18)0.0847 (9)0.0608 (3)0.0444 (13)
H4A0.18440.07190.05200.053*
H4B0.13920.24390.06030.053*
C50.12012 (18)0.0350 (9)0.0201 (3)0.0373 (12)
C60.12908 (18)0.1043 (9)0.1095 (3)0.0444 (13)
C70.18354 (18)0.1681 (10)0.1295 (3)0.0515 (15)
H7A0.20580.04660.10960.062*
H7B0.19220.30160.09410.062*
C80.1931 (2)0.2149 (12)0.2312 (4)0.0659 (18)
H8A0.22690.27850.23880.079*
H8B0.19170.07420.26530.079*
C90.1547 (2)0.3739 (12)0.2690 (3)0.0620 (17)
H9A0.15580.50790.22940.074*
C100.1015 (2)0.2759 (12)0.2579 (4)0.0637 (17)
H10A0.07700.39890.25880.076*
H10B0.09430.18000.31060.076*
C110.0933 (2)0.1404 (10)0.1712 (4)0.0521 (15)
C120.03866 (19)0.0583 (12)0.1611 (3)0.0645 (18)
H12A0.01650.18730.15120.077*
H12B0.02820.01430.21800.077*
C130.03203 (18)0.1058 (11)0.0822 (3)0.0561 (16)
H13A0.04430.25380.10030.067*
H13B0.00380.11900.06680.067*
C140.06178 (17)0.0224 (9)0.0016 (3)0.0416 (13)
H14A0.05410.13910.00600.050*
C150.0514 (2)0.3815 (10)0.1043 (4)0.0629 (16)
H15A0.08680.41970.11100.094*
H15B0.03800.45290.05000.094*
H15C0.03290.43280.15750.094*
C160.1422 (2)0.2680 (10)0.0338 (4)0.0597 (16)
H16A0.13670.35670.02070.089*
H16B0.17820.25620.04540.089*
H16C0.12590.33930.08540.089*
C170.1645 (3)0.4587 (13)0.3682 (4)0.081 (2)
H17A0.16060.32740.40870.097*
C180.1258 (3)0.6326 (14)0.4005 (4)0.109 (3)
H18A0.13330.67550.46290.164*
H18B0.12750.76320.36140.164*
H18C0.09220.56880.39770.164*
C190.2188 (3)0.5441 (16)0.3825 (4)0.114 (3)
H19A0.22300.59280.44520.170*
H19B0.24250.42470.36960.170*
H19C0.22520.66870.34170.170*
C200.0111 (2)0.0508 (10)0.1082 (4)0.0501 (14)
C210.09969 (19)0.2039 (9)0.1201 (4)0.0455 (13)
C220.1229 (2)0.0189 (13)0.1586 (4)0.0669 (18)
H22A0.10350.10270.17880.080*
C230.1762 (2)0.0137 (13)0.1673 (4)0.074 (2)
H23A0.19210.11030.19400.089*
C240.2042 (2)0.1900 (14)0.1367 (4)0.082 (2)
H24A0.23950.18470.14150.098*
C250.1812 (2)0.3788 (12)0.0981 (4)0.0692 (18)
H25A0.20050.50100.07810.083*
C260.1281 (2)0.3796 (11)0.0904 (4)0.0614 (16)
H26A0.11190.50380.06420.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.045 (3)0.058 (3)0.060 (3)0.004 (2)0.007 (2)0.003 (3)
O0.046 (2)0.066 (3)0.101 (3)0.001 (2)0.021 (2)0.003 (3)
C10.035 (3)0.054 (3)0.044 (3)0.005 (3)0.005 (2)0.003 (3)
C20.053 (4)0.071 (4)0.040 (3)0.005 (3)0.006 (3)0.002 (3)
C30.053 (3)0.068 (4)0.040 (3)0.008 (3)0.006 (2)0.008 (3)
C40.035 (3)0.054 (3)0.044 (3)0.007 (3)0.004 (2)0.001 (3)
C50.039 (3)0.041 (3)0.032 (3)0.005 (2)0.001 (2)0.002 (2)
C60.036 (3)0.060 (3)0.037 (3)0.003 (3)0.000 (2)0.006 (3)
C70.037 (3)0.071 (4)0.047 (3)0.000 (3)0.004 (2)0.007 (3)
C80.045 (4)0.103 (5)0.049 (4)0.007 (4)0.009 (3)0.010 (4)
C90.070 (4)0.093 (5)0.024 (3)0.015 (4)0.004 (3)0.004 (3)
C100.052 (4)0.098 (5)0.041 (3)0.009 (4)0.004 (3)0.012 (3)
C110.042 (3)0.069 (4)0.046 (3)0.005 (3)0.002 (3)0.000 (3)
C120.041 (3)0.111 (5)0.041 (3)0.017 (4)0.005 (3)0.012 (4)
C130.038 (3)0.083 (4)0.047 (3)0.011 (3)0.002 (2)0.005 (3)
C140.034 (3)0.049 (3)0.042 (3)0.006 (2)0.001 (2)0.003 (3)
C150.055 (4)0.062 (4)0.072 (4)0.005 (3)0.017 (3)0.003 (3)
C160.053 (4)0.062 (4)0.064 (4)0.001 (3)0.016 (3)0.010 (3)
C170.097 (5)0.108 (6)0.038 (3)0.031 (5)0.006 (3)0.007 (4)
C180.131 (7)0.141 (8)0.055 (4)0.017 (6)0.018 (5)0.035 (5)
C190.102 (6)0.178 (9)0.061 (4)0.048 (6)0.022 (4)0.022 (6)
C200.049 (3)0.049 (3)0.052 (3)0.004 (3)0.009 (3)0.009 (3)
C210.039 (3)0.050 (3)0.047 (3)0.004 (3)0.002 (3)0.003 (3)
C220.039 (4)0.100 (5)0.062 (4)0.009 (4)0.002 (3)0.018 (4)
C230.041 (4)0.093 (5)0.087 (5)0.005 (4)0.009 (3)0.015 (4)
C240.041 (4)0.135 (7)0.069 (5)0.002 (4)0.002 (3)0.005 (5)
C250.050 (4)0.095 (5)0.063 (4)0.030 (4)0.005 (3)0.008 (4)
C260.055 (4)0.082 (5)0.047 (3)0.007 (3)0.005 (3)0.009 (3)
Geometric parameters (Å, º) top
N—C201.364 (6)C11—C121.519 (7)
N—C211.416 (6)C12—C131.511 (7)
N—H0A0.8600C12—H12A0.9700
O—C201.206 (6)C12—H12B0.9700
C1—C21.532 (7)C13—C141.526 (6)
C1—C141.539 (6)C13—H13A0.9700
C1—C151.548 (7)C13—H13B0.9700
C1—C201.564 (7)C14—H14A0.9800
C2—C31.531 (6)C15—H15A0.9600
C2—H2A0.9700C15—H15B0.9600
C2—H2B0.9700C15—H15C0.9600
C3—C41.524 (6)C16—H16A0.9600
C3—H3A0.9700C16—H16B0.9600
C3—H3B0.9700C16—H16C0.9600
C4—C51.551 (6)C17—C181.520 (9)
C4—H4A0.9700C17—C191.525 (8)
C4—H4B0.9700C17—H17A0.9800
C5—C161.510 (7)C18—H18A0.9600
C5—C61.555 (6)C18—H18B0.9600
C5—C141.564 (6)C18—H18C0.9600
C6—C111.315 (6)C19—H19A0.9600
C6—C71.505 (6)C19—H19B0.9600
C7—C81.520 (7)C19—H19C0.9600
C7—H7A0.9700C21—C261.350 (7)
C7—H7B0.9700C21—C221.372 (7)
C8—C91.484 (8)C22—C231.402 (7)
C8—H8A0.9700C22—H22A0.9300
C8—H8B0.9700C23—C241.351 (9)
C9—C101.519 (7)C23—H23A0.9300
C9—C171.544 (7)C24—C251.388 (9)
C9—H9A0.9800C24—H24A0.9300
C10—C111.506 (7)C25—C261.397 (7)
C10—H10A0.9700C25—H25A0.9300
C10—H10B0.9700C26—H26A0.9300
C20—N—C21128.0 (5)C13—C12—H12B109.0
C20—N—H0A116.0C11—C12—H12B109.0
C21—N—H0A116.0H12A—C12—H12B107.8
C2—C1—C14108.9 (4)C12—C13—C14109.6 (4)
C2—C1—C15110.1 (5)C12—C13—H13A109.8
C14—C1—C15115.4 (5)C14—C13—H13A109.8
C2—C1—C20106.6 (4)C12—C13—H13B109.8
C14—C1—C20105.1 (4)C14—C13—H13B109.8
C15—C1—C20110.4 (4)H13A—C13—H13B108.2
C3—C2—C1111.5 (4)C13—C14—C1116.1 (4)
C3—C2—H2A109.3C13—C14—C5109.0 (4)
C1—C2—H2A109.3C1—C14—C5115.1 (4)
C3—C2—H2B109.3C13—C14—H14A105.2
C1—C2—H2B109.3C1—C14—H14A105.2
H2A—C2—H2B108.0C5—C14—H14A105.2
C4—C3—C2112.0 (4)C1—C15—H15A109.5
C4—C3—H3A109.2C1—C15—H15B109.5
C2—C3—H3A109.2H15A—C15—H15B109.5
C4—C3—H3B109.2C1—C15—H15C109.5
C2—C3—H3B109.2H15A—C15—H15C109.5
H3A—C3—H3B107.9H15B—C15—H15C109.5
C3—C4—C5112.1 (4)C5—C16—H16A109.5
C3—C4—H4A109.2C5—C16—H16B109.5
C5—C4—H4A109.2H16A—C16—H16B109.5
C3—C4—H4B109.2C5—C16—H16C109.5
C5—C4—H4B109.2H16A—C16—H16C109.5
H4A—C4—H4B107.9H16B—C16—H16C109.5
C16—C5—C4109.7 (4)C18—C17—C19110.9 (6)
C16—C5—C6108.5 (4)C18—C17—C9113.3 (6)
C4—C5—C6108.5 (4)C19—C17—C9113.0 (5)
C16—C5—C14116.5 (4)C18—C17—H17A106.3
C4—C5—C14106.6 (4)C19—C17—H17A106.3
C6—C5—C14106.9 (4)C9—C17—H17A106.3
C11—C6—C7120.4 (5)C17—C18—H18A109.5
C11—C6—C5123.1 (5)C17—C18—H18B109.5
C7—C6—C5115.9 (4)H18A—C18—H18B109.5
C6—C7—C8112.9 (4)C17—C18—H18C109.5
C6—C7—H7A109.0H18A—C18—H18C109.5
C8—C7—H7A109.0H18B—C18—H18C109.5
C6—C7—H7B109.0C17—C19—H19A109.5
C8—C7—H7B109.0C17—C19—H19B109.5
H7A—C7—H7B107.8H19A—C19—H19B109.5
C9—C8—C7111.3 (5)C17—C19—H19C109.5
C9—C8—H8A109.4H19A—C19—H19C109.5
C7—C8—H8A109.4H19B—C19—H19C109.5
C9—C8—H8B109.4O—C20—N122.8 (5)
C7—C8—H8B109.4O—C20—C1120.7 (5)
H8A—C8—H8B108.0N—C20—C1116.4 (5)
C8—C9—C10109.9 (5)C26—C21—C22120.0 (5)
C8—C9—C17115.9 (5)C26—C21—N117.6 (5)
C10—C9—C17112.2 (5)C22—C21—N122.4 (5)
C8—C9—H9A106.0C21—C22—C23119.8 (6)
C10—C9—H9A106.0C21—C22—H22A120.1
C17—C9—H9A106.0C23—C22—H22A120.1
C11—C10—C9115.0 (4)C24—C23—C22119.7 (7)
C11—C10—H10A108.5C24—C23—H23A120.2
C9—C10—H10A108.5C22—C23—H23A120.2
C11—C10—H10B108.5C23—C24—C25121.2 (6)
C9—C10—H10B108.5C23—C24—H24A119.4
H10A—C10—H10B107.5C25—C24—H24A119.4
C6—C11—C10123.5 (5)C24—C25—C26118.0 (6)
C6—C11—C12123.8 (5)C24—C25—H25A121.0
C10—C11—C12112.7 (4)C26—C25—H25A121.0
C13—C12—C11112.8 (4)C21—C26—C25121.4 (6)
C13—C12—H12A109.0C21—C26—H26A119.3
C11—C12—H12A109.0C25—C26—H26A119.3
C14—C1—C2—C354.0 (6)C15—C1—C14—C1360.9 (6)
C15—C1—C2—C373.4 (6)C20—C1—C14—C1361.0 (6)
C20—C1—C2—C3166.9 (5)C2—C1—C14—C556.2 (6)
C1—C2—C3—C456.7 (6)C15—C1—C14—C568.1 (6)
C2—C3—C4—C558.1 (6)C20—C1—C14—C5170.0 (4)
C3—C4—C5—C1671.7 (5)C16—C5—C14—C1365.6 (6)
C3—C4—C5—C6169.9 (4)C4—C5—C14—C13171.6 (4)
C3—C4—C5—C1455.2 (5)C6—C5—C14—C1355.8 (5)
C16—C5—C6—C11101.6 (6)C16—C5—C14—C166.8 (6)
C4—C5—C6—C11139.2 (5)C4—C5—C14—C156.0 (5)
C14—C5—C6—C1124.7 (7)C6—C5—C14—C1171.8 (4)
C16—C5—C6—C769.5 (6)C8—C9—C17—C18176.2 (6)
C4—C5—C6—C749.6 (6)C10—C9—C17—C1856.4 (8)
C14—C5—C6—C7164.2 (4)C8—C9—C17—C1949.0 (9)
C11—C6—C7—C814.9 (8)C10—C9—C17—C19176.3 (7)
C5—C6—C7—C8156.5 (5)C21—N—C20—O0.9 (9)
C6—C7—C8—C949.8 (7)C21—N—C20—C1178.2 (5)
C7—C8—C9—C1059.3 (6)C2—C1—C20—O52.5 (7)
C7—C8—C9—C17172.2 (5)C14—C1—C20—O62.9 (7)
C8—C9—C10—C1135.4 (7)C15—C1—C20—O172.0 (6)
C17—C9—C10—C11165.9 (6)C2—C1—C20—N128.3 (5)
C7—C6—C11—C109.5 (9)C14—C1—C20—N116.2 (5)
C5—C6—C11—C10179.7 (5)C15—C1—C20—N8.8 (7)
C7—C6—C11—C12173.0 (5)C20—N—C21—C26157.2 (6)
C5—C6—C11—C122.3 (9)C20—N—C21—C2224.0 (9)
C9—C10—C11—C61.1 (9)C26—C21—C22—C230.4 (9)
C9—C10—C11—C12176.7 (6)N—C21—C22—C23178.4 (5)
C6—C11—C12—C1310.9 (8)C21—C22—C23—C240.8 (10)
C10—C11—C12—C13171.4 (5)C22—C23—C24—C251.2 (11)
C11—C12—C13—C1442.7 (7)C23—C24—C25—C261.1 (10)
C12—C13—C14—C1160.7 (4)C22—C21—C26—C250.3 (9)
C12—C13—C14—C567.4 (6)N—C21—C26—C25178.5 (5)
C2—C1—C14—C13174.8 (5)C24—C25—C26—C210.7 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.972.823.705 (5)151
Symmetry code: (i) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.972.823.705 (5)151
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

This research was supported by a grant from the National Natural Science Foundation of China (31470596).

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & De Clercq, E. (2004). Bioorg. Med. Chem. 12, 103–112.  CrossRef PubMed CAS Google Scholar
First citationGonzález, M. A., Pérez-Guaita, D., Correa-Royero, J., Zapata, B., Agudelo, L., Mesa-Arango, A. & Betancur-Galvis, L. (2010). Eur. J. Med. Chem. 45, 811–816.  PubMed Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationRao, X.-P. (2010). Acta Cryst. E66, o2725.  CSD CrossRef IUCr Journals Google Scholar
First citationRao, X. P., Song, Z. Q. & He, L. (2008). Heteroat. Chem. 19, 512–516.  Web of Science CrossRef CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q., Shang, S.-B. & Wu, Y. (2009). Acta Cryst. E65, o2804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmedahirschmann, G. (2005). Pharmacol. Res. 52, 429–437.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXing, Y. H., Zhang, W., Song, J. J., Zhang, Y. X., Jiang, X. X. & Wang, R. (2013). Bioorg. Med. Chem. Lett. 23, 3868–3872.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o801-o802
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds