research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine hydrogen peroxide 4.75-solvate

aInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: churakov@igic.ras.ru

Edited by S. Parkin, University of Kentucky, USA (Received 28 September 2017; accepted 20 October 2017; online 31 October 2017)

The structure of the title co-crystal, C24H16N6·4.75H2O2, consists of a 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine coformer and hydrogen peroxide solvent mol­ecules in an overall ratio of 1:4.75. Three of the six H2O2 mol­ecules modelled in the structure were found to be cross-orientationally disordered over two positions with occupancy ratios 0.846 (9):0.154 (9), 0.75 (2):0.25 (2), and 0.891 (9):0.109 (9). In the crystal, all of the peroxide mol­ecules are linked into hydrogen-bonded chains that propagate parallel to the a axis. These chains are further linked by O—H⋯N hydrogen bonds to the pyridine groups of the main mol­ecule.

1. Chemical context

Peroxosolvates are solids that contain H2O2 mol­ecules in a manner analogous to the water in crystalline hydrates. Nowadays, some peroxosolvates find widespread use as environmentally friendly decontaminating and bleaching compounds (Jakob et al., 2012[Jakob, H., Leininger, S., Lehmann, T., Jacobi, S. & Gutewort, S. (2012). Ullmann's Encyclopedia of Industrial Chemistry, pp 1-33. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.]), and as oxidizing agents in organic synthesis (Ahn et al., 2015[Ahn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341-13345.]). Hydrogen bonding in peroxosolvates is of particular inter­est because it may be used for modelling of hydrogen peroxide behaviour in various significant biochemical processes, especially oxidative stress and transport through cellular membranes (Kapustin et al., 2014[Kapustin, E. A., Minkov, V. S. & Boldyreva, E. V. (2014). CrystEngComm, 16, 10165-10168.]).

[Scheme 1]

2. Structural commentary

The title structure consists of a 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine coformer and six crystallographically independent peroxide mol­ecules (Fig. 1[link]), namely Per1 (major occupancy component H11/O11/O12/H12, minor component H13/O13/O14/H14); Per2 (major occupancy component H21/O21/O22/H22, minor component H23/O23/O24/H24); Per3 (major occupancy component H31/O31/O31/H31, minor component H32/O32/O32/H32); Per4 (H41/O41/O42/H42); Per5 (H51/O51/O52/H52); Per6 (H61/O61/O61/H61). Mol­ecules Per1, Per2, Per4, Per5 occupy general positions and thus exhibit a skew geometry. Mol­ecules Per3 and Per6 lie on inversion centres. Three of the six H2O2 mol­ecules are cross-orientationally disordered over two positions (Fig. 2[link]). This type of disorder was previously reported for several inorganic peroxosolvates (Adams & Pritchard, 1977[Adams, J. M. & Pritchard, R. G. (1977). Acta Cryst. B33, 3650-3653.]; Carrondo et al., 1977[Carrondo, M. A. A. F. de C. T., Griffith, W. P., Jones, D. P. & Skapski, A. C. (1977). J. Chem. Soc. Dalton Trans. pp. 2323-2327.]; Pritchard & Islam, 2003[Pritchard, R. G. & Islam, E. (2003). Acta Cryst. B59, 596-605.]; Medvedev et al., 2012[Medvedev, A. G., Mikhaylov, A. A., Churakov, A. V., Prikhodchenko, P. V. & Lev, O. (2012). Acta Cryst. C68, i20-i24.]).

[Figure 1]
Figure 1
Labelling scheme for organic coformer and six crystallographically independent peroxide mol­ecules. Displacement ellipsoids are shown at the 50% probability level. Hydrogen bonds are drawn as dashed lines. [Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) −x, 2 − y, 1 − z.]
[Figure 2]
Figure 2
Mol­ecule Per2 cross-orientationally disordered over two positions, showing hydrogen bonds (drawn as dashed lines) to mol­ecules Per4 and Per5. The minor component of disorder is depicted with open bonds.

In the organic mol­ecule, all four pyridin-2-yl substituents are significantly inclined with respect to the central pyrazine ring (Fig. 3[link]), such that the N—C—C—N torsion angles range between 130.8 (6) and 140.0 (4)°. Similar conformations have been observed for all three known polymorphs of the pure coformer (Bock et al., 1992[Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. Engl. 31, 299-301.]; Behrens & Rehder, 2009[Behrens, A. & Rehder, D. (2009). CCDC 261615: CSD communication.]; Malecki, 2010[Malecki, J. G. (2010). Private communication (refcode 783938). CCDC, Cambridge, England.]). Of structural significance, the pairs of pyridinyl nitro­gen atoms N1, N4 and N2, N3 are located at opposite sides of the central pyrazine ring. This arrangement clearly facilitates the organization of hydrogen-bonded chains in the structure (see below). All four pyridinyl nitro­gen atoms are involved as hydrogen-bond acceptors, but neither of the pyrazine N atoms participate in hydrogen bonding, presumably because of steric hindrance.

[Figure 3]
Figure 3
Organic coformer with hydrogen-bonded peroxide mol­ecules. Displacement ellipsoids are shown at the 50% probability level. Hydrogen bonds are drawn as dashed lines. [Symmetry codes: (i) x, −1 + y, z; (ii) x, 1 + y, z.]

In the peroxide mol­ecules, the O—O distances range between 1.44 (4) and 1.485 (5) Å. The mean value of 1.465 Å is close to those previously observed in the accurately determined structures of crystalline hydrogen peroxide [1.461 (3) Å; Savariault & Lehmann, 1980[Savariault, J. M. & Lehmann, M. S. (1980). J. Am. Chem. Soc. 102, 1298-1303.]] and urea perhydrate [1.4573 (8) Å; Fritchie & McMullan, 1981[Fritchie, C. J. & McMullan, R. K. (1981). Acta Cryst. B37, 1086-1091.]].

The ordered mol­ecules Per4 and Per5 form four hydrogen bonds (two as donor and two as acceptor) in [2,2] mode (Fig. 4[link]). This coordination environment of the peroxide mol­ecules is the most common arrangement in organic peroxosolvates (Prikhodchenko et al., 2011[Prikhodchenko, P. V., Medvedev, A. G., Tripol'skaya, T. A., Churakov, A. V., Wolanov, Y., Howard, J. A. K. & Lev, O. (2011). CrystEngComm, 13, 2399-2407.]). In contrast, the disordered or partially occupied mol­ecules Per1, Per2, Per3, and Per6 are involved in just two or three hydrogen bonds with adjacent peroxide mol­ecules, but not with the organic coformer. It should be noted that the maximum number of hydrogen bonds possible for H2O2 is six (two as donor and four as acceptor), but such cases are quite rare (Chernyshov et al., 2017[Chernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214-220.]).

[Figure 4]
Figure 4
Hydrogen bonds formed by mol­ecule Per4. Minor components of disorder are drawn with open bonds. Hydrogen bonds are drawn as dashed lines. [Symmetry code: (i) x, 1 + y, z.]

3. Supra­molecular features

In the crystal, all six peroxide mol­ecules are linked into hydrogen-bonded chains that propagate parallel to the a-axis (Table 1[link], Fig. 5[link]). To the best of our knowledge, this is only the second example of hydrogen-bonded chains formed exclusively from peroxide mol­ecules. Recently we reported the structure of thymine peroxosolvate obtained from 98% hydrogen peroxide (Chernyshov et al., 2017[Chernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214-220.]). However, in the latter compound, the peroxide chains are very simple (see Scheme below), belonging to the C1 type according to the Infantes–Motherwell notation of water clusters (Infantes & Motherwell, 2002[Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454-461.]). In the title structure, the chains represent the more complicated T4(0)A1 motif (Fig. 5[link]).

[Scheme 2]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O52i 0.80 1.99 2.793 (7) 179
O12—H12⋯O41i 0.80 1.99 2.789 (7) 180
O13—H13⋯O41i 0.80 1.89 2.69 (4) 180
O14—H14⋯O52i 0.80 2.05 2.85 (3) 179
O21—H21⋯O51 0.80 2.02 2.820 (9) 180
O22—H22⋯O42 0.80 2.07 2.866 (11) 180
O23—H23⋯O51 0.80 1.96 2.77 (3) 180
O24—H24⋯O42 0.80 1.84 2.64 (3) 180
O31—H31⋯O22 0.80 2.15 2.947 (9) 176
O32—H32⋯O24 0.80 2.34 3.14 (5) 173
O41—H41⋯N3 0.80 1.93 2.729 (5) 180
O42—H42⋯N4ii 0.80 1.97 2.770 (5) 180
O51—H51⋯N2 0.80 1.94 2.737 (5) 180
O52—H52⋯N1ii 0.80 1.94 2.740 (5) 180
O61—H61⋯O11 0.80 1.64 2.440 (17) 178
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.
[Figure 5]
Figure 5
Peroxide hydrogen-bonded chains parallel to the a-axis. Minor components of disorder are not shown for clarity. Hydrogen bonds are drawn as dashed lines.

The peroxide chains are inter­connected via the organic mol­ecules by moderate HOO—H⋯N hydrogen bonds. Despite the aromatic nature of organic coformer, no ππ stacking or T-shaped C—H⋯π inter­molecular inter­actions are observed in the structure. Thus, hydrogen bonding plays the predominant role in the crystal packing.

4. Database survey

The Cambridge Structural Database (Version 5.38: Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains data for 72 individual `true' peroxosolvates (78 refcodes), in which the peroxide mol­ecules do not form direct bonds to metal atoms. A few of these represent examples of mixed halogen–peroxide chains of general formula ⋯Hal⋯(H2O2)n⋯Hal⋯(H2O2)k⋯ (n, k = 1, 2; Hal = Cl, Br; CAZHAN, CAZHER, CAZHIV, CAZHOB, CAZHUH, CAZJAP: Churakov et al., 2005[Churakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664-669.]), mixed carbonate–peroxide chains (WUXSIT: Medvedev et al., 2012[Medvedev, A. G., Mikhaylov, A. A., Churakov, A. V., Prikhodchenko, P. V. & Lev, O. (2012). Acta Cryst. C68, i20-i24.]) and disordered mixed peroxide–water chains (WINSAO: Churakov & Howard, 2007[Churakov, A. V. & Howard, J. A. K. (2007). Acta Cryst. E63, o4483.]; QOHXUH: Laus et al., 2008[Laus, G., Kahlenberg, V., Wurst, K., Lörting, T. & Schottenberger, H. (2008). CrystEngComm, 10, 1638-1644.]).

5. Synthesis and crystallization

98% Hydrogen peroxide was prepared by an extraction method from serine peroxosolvate (Wolanov et al., 2010[Wolanov, Y., Lev, O., Churakov, A. V., Medvedev, A. G., Novotortsev, V. M. & Prikhodchenko, P. V. (2010). Tetrahedron, 66, 5130-5133.]). Colourless prismatic crystals of the title compound were obtained by cooling a saturated solution (r.t.) of 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine (Aldrich) in 96% hydrogen peroxide to 255 K.

Several crystals were examined. All of them exhibited poor crystallinity, presumably as a result of the rather extensive disorder of the peroxide mol­ecules.

Handling procedures for concentrated hydrogen peroxide have been described in detail (danger of explosion!) by Schumb et al. (1955[Schumb, W. C., Satterfield, C. N. & Wentworth, R. P. (1955). Hydrogen peroxide. New York: Reinhold Publishing Corp.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Three of the six H2O2 mol­ecules were found to be cross-orientationally disordered over two positions with occupancy ratios 0.846 (9):0.154 (9), 0.75 (2):0.25 (2), and 0.891 (9):0.109 (9), and were refined with restrained O—O distances.

Table 2
Experimental details

Crystal data
Chemical formula C24H16N6·4.75H2O2
Mr 550.00
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 19.000 (7), 7.382 (3), 20.212 (7)
β (°) 114.271 (5)
V3) 2584.3 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.40 × 0.30
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.957, 0.967
No. of measured, independent and observed [I > 2σ(I)] reflections 16397, 4563, 3870
Rint 0.035
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.191, 1.17
No. of reflections 4563
No. of parameters 388
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The centrosymmetric peroxide mol­ecule modelled as H61/O61/O61i/H61i [symmetry code: (i) 1 − x, −y, 1 − z] was found to be partially occupied. Simultaneous refinement of occupancy and thermal parameters for atom O61 was not stable and resulted in oscillating occupancies between 0.46 and 0.53 for consecutive cycles of refinement. It was therefore fixed at 0.5 for the final refinement.

Aromatic H atoms were placed in calculated positions with C—H = 0.95 Å and refined as riding atoms with relative isotropic displacement parameters Uiso(H) = 1.2Ueq(C). Peroxide hydrogen atoms were placed on the lines connecting hydrogen-bonded atoms at a distance of 0.80 Å from the corresponding O atoms. They were refined as riding atoms with relative isotropic displacement parameters Uiso(H) = 1.5Ueq(O).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2,3,5,6-Tetrakis(pyridin-2-yl)pyrazine hydrogen peroxide 4.75-solvate top
Crystal data top
C24H16N6·4.75H2O2F(000) = 1150
Mr = 550.00Dx = 1.414 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5939 reflections
a = 19.000 (7) Åθ = 2.2–30.1°
b = 7.382 (3) ŵ = 0.11 mm1
c = 20.212 (7) ÅT = 150 K
β = 114.271 (5)°Prism, colourless
V = 2584.3 (16) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
4563 independent reflections
Radiation source: fine-focus sealed tube3870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.1°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2222
Tmin = 0.957, Tmax = 0.967k = 88
16397 measured reflectionsl = 2423
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.090H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.010P)2 + 10.P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
4563 reflectionsΔρmax = 0.39 e Å3
388 parametersΔρmin = 0.36 e Å3
3 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O110.3518 (4)0.0660 (7)0.4736 (3)0.0662 (16)0.846 (9)
H110.36400.03530.51480.099*0.846 (9)
O120.3037 (3)0.0865 (7)0.4355 (3)0.0500 (13)0.846 (9)
H120.26020.05370.41290.075*0.846 (9)
O130.302 (2)0.084 (3)0.4427 (16)0.0662 (16)0.154 (9)
H130.25740.06740.41700.099*0.154 (9)
O140.325 (2)0.101 (4)0.4650 (18)0.0500 (13)0.154 (9)
H140.34480.08460.50790.075*0.154 (9)
O210.1982 (4)0.8976 (8)0.5494 (5)0.046 (2)0.75 (2)
H210.24280.90080.57680.068*0.75 (2)
O220.1750 (5)1.0887 (9)0.5388 (5)0.045 (2)0.75 (2)
H220.15781.09530.49550.068*0.75 (2)
O230.2088 (15)1.053 (3)0.5761 (17)0.054 (6)0.25 (2)
H230.25131.01140.59610.081*0.25 (2)
O240.1651 (17)0.951 (3)0.5117 (15)0.056 (7)0.25 (2)
H240.14960.99920.47290.084*0.25 (2)
O310.0252 (3)0.9210 (7)0.5133 (3)0.0661 (17)0.891 (9)
H310.06610.96770.52240.099*0.891 (9)
O320.014 (2)0.952 (6)0.4653 (14)0.0661 (17)0.109 (9)
H320.03090.95950.47450.099*0.109 (9)
O410.15205 (18)0.9727 (4)0.35656 (18)0.0412 (8)
H410.12670.89120.36120.062*
O420.1137 (2)1.1114 (4)0.38369 (18)0.0440 (9)
H420.12001.19550.36180.066*
O510.35556 (18)0.9097 (5)0.64562 (18)0.0438 (8)
H510.38020.82600.64150.066*
O520.3959 (2)1.0412 (5)0.61765 (18)0.0496 (9)
H520.38511.12640.63620.074*
O610.4922 (9)0.0768 (15)0.5192 (8)0.149 (6)*0.50
H610.44620.07500.50460.224*0.50
N10.35882 (19)0.3326 (5)0.68106 (18)0.0299 (8)
N20.43995 (19)0.6236 (5)0.63149 (18)0.0310 (8)
N30.06552 (18)0.6947 (5)0.37238 (18)0.0276 (8)
N40.13565 (19)0.4025 (5)0.30774 (17)0.0270 (8)
N50.19869 (18)0.5011 (5)0.53122 (17)0.0232 (7)
N60.29935 (18)0.5095 (5)0.46312 (17)0.0243 (7)
C110.2751 (2)0.4834 (6)0.5698 (2)0.0242 (9)
C120.3013 (2)0.4523 (6)0.6494 (2)0.0255 (9)
C130.2670 (2)0.5469 (6)0.6880 (2)0.0307 (10)
H13A0.22540.62770.66390.037*
C140.2949 (3)0.5205 (7)0.7624 (2)0.0374 (11)
H14A0.27230.58260.79000.045*
C150.3561 (3)0.4026 (7)0.7959 (2)0.0414 (12)
H15A0.37720.38470.84700.050*
C160.3856 (3)0.3116 (7)0.7531 (2)0.0375 (11)
H16A0.42710.22960.77610.045*
C210.3263 (2)0.4994 (6)0.5354 (2)0.0248 (9)
C220.4120 (2)0.5050 (6)0.5756 (2)0.0287 (9)
C230.4586 (2)0.3985 (7)0.5539 (2)0.0329 (10)
H23A0.43670.31770.51400.039*
C240.5380 (2)0.4123 (7)0.5916 (2)0.0380 (11)
H24A0.57160.33980.57840.046*
C250.5674 (2)0.5328 (8)0.6485 (3)0.0444 (13)
H25A0.62170.54590.67470.053*
C260.5169 (2)0.6350 (7)0.6671 (3)0.0396 (11)
H26A0.53780.71660.70680.048*
C310.1721 (2)0.5232 (5)0.45945 (19)0.0199 (8)
C320.0876 (2)0.5562 (5)0.42050 (19)0.0215 (8)
C330.0354 (2)0.4529 (6)0.4356 (2)0.0240 (9)
H33A0.05300.35720.47000.029*
C340.0424 (2)0.4894 (6)0.4006 (2)0.0283 (9)
H34A0.07910.41960.41020.034*
C350.0658 (2)0.6309 (7)0.3507 (2)0.0371 (11)
H35A0.11900.65980.32560.045*
C360.0101 (2)0.7290 (7)0.3384 (2)0.0356 (11)
H36A0.02650.82520.30420.043*
C410.2231 (2)0.5160 (5)0.4245 (2)0.0217 (8)
C420.1960 (2)0.5127 (6)0.3444 (2)0.0249 (9)
C430.2327 (2)0.6153 (6)0.3100 (2)0.0294 (9)
H43A0.27570.68930.33760.035*
C440.2056 (2)0.6080 (7)0.2353 (2)0.0334 (10)
H44A0.22990.67630.21070.040*
C450.1427 (3)0.4993 (7)0.1970 (2)0.0372 (11)
H45A0.12250.49320.14560.045*
C460.1094 (3)0.3989 (6)0.2350 (2)0.0329 (10)
H46A0.06620.32450.20830.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.075 (4)0.052 (3)0.057 (3)0.014 (3)0.013 (3)0.001 (2)
O120.053 (3)0.051 (3)0.046 (3)0.002 (2)0.020 (3)0.005 (3)
O130.075 (4)0.052 (3)0.057 (3)0.014 (3)0.013 (3)0.001 (2)
O140.053 (3)0.051 (3)0.046 (3)0.002 (2)0.020 (3)0.005 (3)
O210.045 (3)0.022 (3)0.062 (5)0.006 (2)0.015 (3)0.009 (3)
O220.054 (5)0.034 (4)0.051 (4)0.011 (3)0.026 (4)0.008 (3)
O230.053 (12)0.050 (12)0.054 (14)0.018 (9)0.017 (11)0.002 (10)
O240.067 (15)0.039 (12)0.054 (12)0.013 (10)0.015 (12)0.015 (10)
O310.046 (3)0.066 (4)0.084 (4)0.006 (2)0.023 (3)0.019 (3)
O320.046 (3)0.066 (4)0.084 (4)0.006 (2)0.023 (3)0.019 (3)
O410.0441 (19)0.0314 (18)0.060 (2)0.0005 (15)0.0332 (17)0.0008 (16)
O420.062 (2)0.0319 (19)0.055 (2)0.0017 (16)0.0406 (18)0.0050 (16)
O510.0428 (19)0.040 (2)0.053 (2)0.0024 (16)0.0236 (16)0.0053 (16)
O520.062 (2)0.044 (2)0.050 (2)0.0047 (18)0.0307 (18)0.0026 (17)
N10.0267 (18)0.034 (2)0.0260 (18)0.0024 (16)0.0076 (14)0.0065 (15)
N20.0246 (18)0.033 (2)0.0324 (19)0.0004 (15)0.0087 (15)0.0069 (16)
N30.0224 (17)0.032 (2)0.0316 (18)0.0030 (15)0.0143 (14)0.0028 (15)
N40.0268 (18)0.031 (2)0.0245 (17)0.0013 (15)0.0114 (14)0.0026 (15)
N50.0201 (16)0.0252 (18)0.0246 (17)0.0034 (14)0.0096 (13)0.0016 (14)
N60.0235 (17)0.0241 (18)0.0271 (17)0.0006 (14)0.0123 (14)0.0058 (14)
C110.0234 (19)0.024 (2)0.0248 (19)0.0030 (16)0.0097 (16)0.0010 (16)
C120.0208 (19)0.031 (2)0.025 (2)0.0072 (17)0.0096 (16)0.0005 (17)
C130.026 (2)0.039 (3)0.027 (2)0.0044 (19)0.0112 (17)0.0007 (18)
C140.039 (2)0.046 (3)0.031 (2)0.012 (2)0.017 (2)0.003 (2)
C150.043 (3)0.050 (3)0.024 (2)0.013 (2)0.007 (2)0.004 (2)
C160.033 (2)0.045 (3)0.029 (2)0.003 (2)0.0070 (19)0.008 (2)
C210.0216 (19)0.026 (2)0.025 (2)0.0003 (17)0.0082 (16)0.0015 (17)
C220.023 (2)0.037 (3)0.024 (2)0.0014 (18)0.0079 (16)0.0115 (19)
C230.024 (2)0.051 (3)0.026 (2)0.006 (2)0.0129 (17)0.011 (2)
C240.026 (2)0.051 (3)0.040 (2)0.010 (2)0.017 (2)0.020 (2)
C250.019 (2)0.063 (4)0.047 (3)0.004 (2)0.009 (2)0.019 (3)
C260.028 (2)0.041 (3)0.039 (2)0.009 (2)0.0039 (19)0.008 (2)
C310.0243 (19)0.0136 (19)0.0240 (19)0.0047 (15)0.0121 (16)0.0011 (15)
C320.0224 (19)0.024 (2)0.0203 (18)0.0004 (16)0.0112 (15)0.0025 (16)
C330.025 (2)0.029 (2)0.0189 (18)0.0030 (17)0.0103 (16)0.0022 (16)
C340.0204 (19)0.040 (3)0.026 (2)0.0063 (18)0.0105 (16)0.0057 (19)
C350.018 (2)0.054 (3)0.036 (2)0.006 (2)0.0076 (18)0.002 (2)
C360.027 (2)0.041 (3)0.039 (2)0.007 (2)0.0141 (19)0.008 (2)
C410.0215 (19)0.019 (2)0.027 (2)0.0008 (16)0.0120 (16)0.0035 (16)
C420.0221 (19)0.028 (2)0.027 (2)0.0058 (17)0.0122 (16)0.0016 (17)
C430.022 (2)0.040 (3)0.030 (2)0.0027 (18)0.0144 (17)0.0044 (19)
C440.033 (2)0.044 (3)0.031 (2)0.006 (2)0.0208 (19)0.009 (2)
C450.044 (3)0.049 (3)0.023 (2)0.012 (2)0.0183 (19)0.001 (2)
C460.035 (2)0.038 (3)0.024 (2)0.001 (2)0.0107 (18)0.0081 (19)
Geometric parameters (Å, º) top
O11—H110.8000C12—C131.392 (6)
O12—H120.8001C13—C141.387 (6)
O13—H130.8000C13—H13A0.9500
O14—H140.7999C14—C151.386 (7)
O21—O221.467 (12)C14—H14A0.9500
O21—H210.8000C15—C161.383 (7)
O22—H220.8002C15—H15A0.9500
O23—O241.44 (4)C16—H16A0.9500
O23—H230.8001C21—C221.491 (5)
O24—H240.7998C22—C231.384 (6)
O31—O31i1.465 (9)C23—C241.386 (6)
O31—H310.7999C23—H23A0.9500
O31—H320.8813C24—C251.378 (7)
O32—O32i1.463 (13)C24—H24A0.9500
O32—H320.7999C25—C261.389 (7)
O41—O421.486 (4)C25—H25A0.9500
O41—H410.7997C26—H26A0.9500
O42—H420.8001C31—C411.415 (5)
O51—O521.485 (5)C31—C321.489 (5)
O51—H510.8002C32—C331.382 (5)
O52—H520.8001C33—C341.377 (5)
O61—O61ii1.471 (10)C33—H33A0.9500
O61—H610.7999C34—C351.391 (6)
N1—C161.340 (5)C34—H34A0.9500
N1—C121.345 (5)C35—C361.387 (6)
N2—C261.340 (5)C35—H35A0.9500
N2—C221.354 (6)C36—H36A0.9500
N3—C361.338 (5)C41—C421.483 (5)
N3—C321.353 (5)C42—C431.394 (6)
N4—C461.345 (5)C43—C441.381 (6)
N4—C421.352 (5)C43—H43A0.9500
N5—C311.336 (5)C44—C451.383 (6)
N5—C111.342 (5)C44—H44A0.9500
N6—C411.335 (5)C45—C461.391 (6)
N6—C211.337 (5)C45—H45A0.9500
C11—C211.416 (5)C46—H46A0.9500
C11—C121.493 (5)
O12—O11—H11100.6C22—C23—C24118.6 (4)
O11—O12—H12110.1C22—C23—H23A120.7
H12—O12—H14128.2C24—C23—H23A120.7
H13—O12—H14107.7C25—C24—C23118.8 (4)
O14—O13—H1399.5C25—C24—H24A120.6
H11—O14—H12115.4C23—C24—H24A120.6
O13—O14—H1497.8C24—C25—C26119.2 (4)
O22—O21—H21104.0C24—C25—H25A120.4
O21—O22—H22100.4C26—C25—H25A120.4
O24—O23—H23110.2N2—C26—C25122.9 (5)
O23—O24—H24119.8N2—C26—H26A118.5
O31i—O31—H3199.7C25—C26—H26A118.5
O32i—O32—H3278.8N5—C31—C41120.5 (3)
O42—O41—H4193.7N5—C31—C32116.0 (3)
O41—O42—H4297.0C41—C31—C32123.5 (3)
O52—O51—H5192.9N3—C32—C33122.5 (4)
O51—O52—H5293.7N3—C32—C31116.9 (3)
O61ii—O61—H61102.7C33—C32—C31120.6 (3)
C16—N1—C12117.7 (4)C34—C33—C32119.6 (4)
C26—N2—C22117.1 (4)C34—C33—H33A120.2
C36—N3—C32117.5 (4)C32—C33—H33A120.2
C46—N4—C42117.5 (4)C33—C34—C35118.4 (4)
C31—N5—C11118.6 (3)C33—C34—H34A120.8
C41—N6—C21118.5 (3)C35—C34—H34A120.8
N5—C11—C21120.2 (3)C36—C35—C34118.8 (4)
N5—C11—C12116.4 (3)C36—C35—H35A120.6
C21—C11—C12123.4 (3)C34—C35—H35A120.6
N1—C12—C13122.6 (4)N3—C36—C35123.2 (4)
N1—C12—C11117.4 (4)N3—C36—H36A118.4
C13—C12—C11120.0 (4)C35—C36—H36A118.4
C14—C13—C12118.6 (4)N6—C41—C31120.7 (3)
C14—C13—H13A120.7N6—C41—C42116.3 (3)
C12—C13—H13A120.7C31—C41—C42122.9 (3)
C15—C14—C13119.2 (4)N4—C42—C43122.6 (4)
C15—C14—H14A120.4N4—C42—C41116.4 (3)
C13—C14—H14A120.4C43—C42—C41121.0 (4)
C16—C15—C14118.3 (4)C44—C43—C42119.1 (4)
C16—C15—H15A120.9C44—C43—H43A120.5
C14—C15—H15A120.9C42—C43—H43A120.5
N1—C16—C15123.6 (4)C43—C44—C45118.8 (4)
N1—C16—H16A118.2C43—C44—H44A120.6
C15—C16—H16A118.2C45—C44—H44A120.6
N6—C21—C11120.6 (3)C44—C45—C46119.0 (4)
N6—C21—C22115.8 (3)C44—C45—H45A120.5
C11—C21—C22123.5 (3)C46—C45—H45A120.5
N2—C22—C23123.3 (4)N4—C46—C45123.0 (4)
N2—C22—C21116.0 (4)N4—C46—H46A118.5
C23—C22—C21120.6 (4)C45—C46—H46A118.5
C31—N5—C11—C213.9 (6)C41—C31—C32—N347.1 (5)
C31—N5—C11—C12177.8 (4)N5—C31—C32—C3345.2 (5)
C16—N1—C12—C133.0 (6)C41—C31—C32—C33135.2 (4)
C16—N1—C12—C11176.3 (4)N3—C32—C33—C340.4 (6)
N5—C11—C12—N1140.0 (4)C31—C32—C33—C34178.0 (3)
C21—C11—C12—N141.8 (6)C32—C33—C34—C350.1 (6)
N5—C11—C12—C1340.7 (6)C33—C34—C35—C360.0 (6)
C21—C11—C12—C13137.6 (4)C32—N3—C36—C350.5 (7)
N1—C12—C13—C142.0 (6)C34—C35—C36—N30.2 (7)
C11—C12—C13—C14177.3 (4)C21—N6—C41—C313.8 (6)
C12—C13—C14—C150.5 (7)C21—N6—C41—C42175.4 (4)
C13—C14—C15—C161.8 (7)N5—C31—C41—N68.3 (6)
C12—N1—C16—C151.6 (7)C32—C31—C41—N6171.2 (4)
C14—C15—C16—N10.7 (7)N5—C31—C41—C42170.9 (4)
C41—N6—C21—C114.3 (6)C32—C31—C41—C429.6 (6)
C41—N6—C21—C22176.0 (4)C46—N4—C42—C432.3 (6)
N5—C11—C21—N68.4 (6)C46—N4—C42—C41179.2 (4)
C12—C11—C21—N6173.4 (4)N6—C41—C42—N4135.6 (4)
N5—C11—C21—C22171.9 (4)C31—C41—C42—N443.6 (5)
C12—C11—C21—C226.2 (7)N6—C41—C42—C4342.8 (6)
C26—N2—C22—C230.4 (6)C31—C41—C42—C43137.9 (4)
C26—N2—C22—C21178.1 (4)N4—C42—C43—C441.5 (6)
N6—C21—C22—N2130.8 (4)C41—C42—C43—C44179.9 (4)
C11—C21—C22—N249.6 (6)C42—C43—C44—C450.2 (6)
N6—C21—C22—C2347.0 (6)C43—C44—C45—C461.0 (7)
C11—C21—C22—C23132.7 (4)C42—N4—C46—C451.6 (6)
N2—C22—C23—C240.6 (6)C44—C45—C46—N40.1 (7)
C21—C22—C23—C24178.1 (4)H11—O11—O12—H12116.1
C22—C23—C24—C250.8 (6)H13—O13—O14—H14127.8
C23—C24—C25—C260.9 (7)H21—O21—O22—H22125.3
C22—N2—C26—C250.5 (6)H23—O23—O24—H24118.1
C24—C25—C26—N20.8 (7)H31—O31—O31i—H31i180.0
C11—N5—C31—C414.1 (6)H32—O32—O32i—H32i180.0
C11—N5—C31—C32175.5 (4)H41—O41—O42—H42152.1
C36—N3—C32—C330.6 (6)H51—O51—O52—H52158.2
C36—N3—C32—C31178.3 (4)H61—O61—O61ii—H61ii180.0
N5—C31—C32—N3132.5 (4)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O52iii0.801.992.793 (7)179
O12—H12···O41iii0.801.992.789 (7)180
O13—H13···O41iii0.801.892.69 (4)180
O14—H14···O52iii0.802.052.85 (3)179
O21—H21···O510.802.022.820 (9)180
O22—H22···O420.802.072.866 (11)180
O23—H23···O510.801.962.77 (3)180
O24—H24···O420.801.842.64 (3)180
O31—H31···O220.802.152.947 (9)176
O32—H32···O240.802.343.14 (5)173
O41—H41···N30.801.932.729 (5)180
O42—H42···N4iv0.801.972.770 (5)180
O51—H51···N20.801.942.737 (5)180
O52—H52···N1iv0.801.942.740 (5)180
O61—H61···O110.801.642.440 (17)178
Symmetry codes: (iii) x, y1, z; (iv) x, y+1, z.
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

Funding information

The financial support from RFBR is greatly acknowledged (17–03-00762).

References

First citationAdams, J. M. & Pritchard, R. G. (1977). Acta Cryst. B33, 3650–3653.  CrossRef CAS IUCr Journals Web of Science
First citationAhn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341–13345.  CAS
First citationBehrens, A. & Rehder, D. (2009). CCDC 261615: CSD communication.
First citationBock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. Engl. 31, 299–301.  CSD CrossRef Web of Science
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCarrondo, M. A. A. F. de C. T., Griffith, W. P., Jones, D. P. & Skapski, A. C. (1977). J. Chem. Soc. Dalton Trans. pp. 2323–2327.
First citationChernyshov, I. Yu., Vener, M. V., Prikhodchenko, P. V., Medvedev, A. G., Lev, O. & Churakov, A. V. (2017). Cryst. Growth Des. 17, 214–220.  CAS
First citationChurakov, A. V. & Howard, J. A. K. (2007). Acta Cryst. E63, o4483.  Web of Science CSD CrossRef IUCr Journals
First citationChurakov, A. V., Prikhodchenko, P. V. & Howard, J. A. K. (2005). CrystEngComm, 7, 664–669.  Web of Science CSD CrossRef CAS
First citationFritchie, C. J. & McMullan, R. K. (1981). Acta Cryst. B37, 1086–1091.  CSD CrossRef CAS Web of Science IUCr Journals
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationInfantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461.  Web of Science CSD CrossRef CAS
First citationJakob, H., Leininger, S., Lehmann, T., Jacobi, S. & Gutewort, S. (2012). Ullmann's Encyclopedia of Industrial Chemistry, pp 1–33. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
First citationKapustin, E. A., Minkov, V. S. & Boldyreva, E. V. (2014). CrystEngComm, 16, 10165–10168.  CAS
First citationLaus, G., Kahlenberg, V., Wurst, K., Lörting, T. & Schottenberger, H. (2008). CrystEngComm, 10, 1638–1644.  Web of Science CSD CrossRef CAS
First citationMalecki, J. G. (2010). Private communication (refcode 783938). CCDC, Cambridge, England.
First citationMedvedev, A. G., Mikhaylov, A. A., Churakov, A. V., Prikhodchenko, P. V. & Lev, O. (2012). Acta Cryst. C68, i20–i24.  Web of Science CSD CrossRef IUCr Journals
First citationPrikhodchenko, P. V., Medvedev, A. G., Tripol'skaya, T. A., Churakov, A. V., Wolanov, Y., Howard, J. A. K. & Lev, O. (2011). CrystEngComm, 13, 2399–2407.  Web of Science CSD CrossRef CAS
First citationPritchard, R. G. & Islam, E. (2003). Acta Cryst. B59, 596–605.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSavariault, J. M. & Lehmann, M. S. (1980). J. Am. Chem. Soc. 102, 1298–1303.  CrossRef CAS Web of Science
First citationSchumb, W. C., Satterfield, C. N. & Wentworth, R. P. (1955). Hydrogen peroxide. New York: Reinhold Publishing Corp.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWolanov, Y., Lev, O., Churakov, A. V., Medvedev, A. G., Novotortsev, V. M. & Prikhodchenko, P. V. (2010). Tetrahedron, 66, 5130–5133.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds