organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Hy­droxy­phen­yl)acetic acid–4,4′-bi­pyridine (1/1)

aCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 10 May 2010; accepted 20 May 2010; online 26 May 2010)

In the acid mol­ecule of the title complex, C10H8N2·C8H8O3, the acetyl C—C—C—O torsion angle is −32.1 (3)°, and in the mol­ecule of the base, the dihedral angle between the two pyridine rings is 23.41 (10)°. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link the acid and the base mol­ecules into a one-dimensional triple-helix framework extended along the b axis.

Related literature

For related functional complexes, see: Han et al. (2009[Han, L., Zhou, Y., Wang, X. T., Li, X. & Tong, M. L. (2009). J. Mol. Struct. 923, 24-27.]). For hydrogen-bond motif structures, see: Tomura & Yamashita (2001[Tomura, M. & Yamashita, Y. (2001). Chem. Lett. 30, 532-533.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C8H8O3

  • Mr = 308.33

  • Monoclinic, C 2/c

  • a = 25.3578 (6) Å

  • b = 10.2305 (2) Å

  • c = 14.2546 (4) Å

  • β = 122.321 (2)°

  • V = 3125.03 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.14 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.994

  • 24334 measured reflections

  • 3650 independent reflections

  • 2128 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.06

  • 3650 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯N2i 0.97 (2) 1.71 (2) 2.679 (2) 179 (2)
O3—H3O⋯N1ii 0.87 (2) 1.86 (2) 2.728 (2) 171 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, y+1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of coordination complexes have absorbed considerable attention due to their diverse structures with 4,4'-bipyridine linker (Han et al., 2009). Moreover, hydrogen bond can also play a role in forming motif structures (Tomura & Yamashita, 2001). We have designed the title complex in an attempt to prepare crystaline magnetic materials and report its crystal structure in this paper.

The structure of the title complex is shown in Fig. 1, which reveals that it contains 2-(4-hydroxyphenyl)acetic acid and 4,4'-bipyridine in a ratio of 1:1. In the molecule of 2-(4-hydroxyphenyl)acetic acid, the acetyl torsion angle C(1)—C(7)—C(8)—O(2) is -32.1 (3) °, and in the molecule of 4,4'-bipyridine, the dihedral angle between the two pyridine rings is 23.41 (10) °. The two molecules arranged in the crystal at regular intervals with two O—H···N hydrogen bonds. The end to end hydrogen-bonding interactions lead to the formation of a one-dimensional triple-helix structure framework along the b-axis, Fig 2. Between adjacent triple-helix chains there exist weak ππ interactions.

Related literature top

For related functional complexes, see: Han et al. (2009). For hydrogen-bond motif structures, see: Tomura & Yamashita (2001).

Experimental top

2-(4-hydroxyphenyl)acetic acid (0.152 g, 1 mmol) and 4,4'-bipyridine (0.156 g, 1 mmol) were added to a mixed solution of ethanol (20 ml) and water (10 ml) with Cu(SO4)2 (0.127 g, 0.5 mmol) under stirred conditions at room temperature. A few minutes later a lot of blue deposit appeared. After the deposit was filtered out, a light blue solution was kept for evaporating. Colorless single crystals of the title complex were obtained about 19 days later.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.97 Å for methylene and aryl H-atoms, respectively and Uiso(H) = 1.2Ueq(C). The H atoms bonded to O atoms were located in a difference Fourier map and refined without restraints.

Structure description top

The design and synthesis of coordination complexes have absorbed considerable attention due to their diverse structures with 4,4'-bipyridine linker (Han et al., 2009). Moreover, hydrogen bond can also play a role in forming motif structures (Tomura & Yamashita, 2001). We have designed the title complex in an attempt to prepare crystaline magnetic materials and report its crystal structure in this paper.

The structure of the title complex is shown in Fig. 1, which reveals that it contains 2-(4-hydroxyphenyl)acetic acid and 4,4'-bipyridine in a ratio of 1:1. In the molecule of 2-(4-hydroxyphenyl)acetic acid, the acetyl torsion angle C(1)—C(7)—C(8)—O(2) is -32.1 (3) °, and in the molecule of 4,4'-bipyridine, the dihedral angle between the two pyridine rings is 23.41 (10) °. The two molecules arranged in the crystal at regular intervals with two O—H···N hydrogen bonds. The end to end hydrogen-bonding interactions lead to the formation of a one-dimensional triple-helix structure framework along the b-axis, Fig 2. Between adjacent triple-helix chains there exist weak ππ interactions.

For related functional complexes, see: Han et al. (2009). For hydrogen-bond motif structures, see: Tomura & Yamashita (2001).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing plot of the complex showing triple-helix chains.
2-(4-Hydroxyphenyl)acetic acid–4,4'-bipyridine (1/1) top
Crystal data top
C10H8N2·C8H8O3F(000) = 1296
Mr = 308.33Dx = 1.311 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3274 reflections
a = 25.3578 (6) Åθ = 1.9–27.7°
b = 10.2305 (2) ŵ = 0.09 mm1
c = 14.2546 (4) ÅT = 296 K
β = 122.321 (2)°Block, colourless
V = 3125.03 (15) Å30.25 × 0.14 × 0.06 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3650 independent reflections
Radiation source: fine-focus sealed tube2128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ & ω scansθmax = 27.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3232
Tmin = 0.984, Tmax = 0.994k = 1313
24334 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.065P)2 + 0.2994P]
where P = (Fo2 + 2Fc2)/3
3650 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C10H8N2·C8H8O3V = 3125.03 (15) Å3
Mr = 308.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.3578 (6) ŵ = 0.09 mm1
b = 10.2305 (2) ÅT = 296 K
c = 14.2546 (4) Å0.25 × 0.14 × 0.06 mm
β = 122.321 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3650 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2128 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.994Rint = 0.043
24334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.15 e Å3
3650 reflectionsΔρmin = 0.16 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54789 (7)0.32235 (16)0.04851 (15)0.0637 (5)
C20.54036 (7)0.28856 (15)0.13430 (17)0.0674 (5)
H2A0.52110.20980.13080.081*
C30.56064 (8)0.36856 (15)0.22505 (16)0.0624 (5)
H3A0.55540.34310.28220.075*
C40.58890 (7)0.48680 (14)0.23132 (14)0.0540 (4)
C50.59659 (7)0.52233 (14)0.14611 (14)0.0555 (4)
H5A0.61560.60140.14940.067*
C60.57611 (8)0.44072 (16)0.05596 (15)0.0618 (4)
H6A0.58140.46600.00110.074*
C70.52498 (9)0.23409 (19)0.05088 (17)0.0888 (7)
H7A0.48260.20740.07650.107*
H7B0.52350.28430.11000.107*
C80.56331 (9)0.11343 (17)0.03167 (16)0.0686 (5)
C90.27818 (7)0.03470 (14)0.13722 (13)0.0531 (4)
C100.24522 (9)0.08224 (16)0.10478 (15)0.0668 (5)
H10A0.20190.08210.06800.080*
C110.27717 (11)0.19771 (17)0.12756 (17)0.0777 (6)
H11A0.25430.27490.10670.093*
C120.37044 (10)0.09378 (19)0.20793 (17)0.0780 (6)
H12A0.41360.09680.24230.094*
C130.34242 (8)0.02609 (17)0.19086 (15)0.0669 (5)
H13A0.36660.10150.21530.080*
C140.24634 (7)0.16282 (14)0.11616 (13)0.0510 (4)
C150.18450 (8)0.17940 (15)0.03144 (14)0.0600 (4)
H15A0.16210.10970.01470.072*
C160.15638 (8)0.29964 (16)0.01587 (15)0.0656 (5)
H16A0.11440.30780.03940.079*
C170.24598 (9)0.38940 (16)0.15596 (15)0.0657 (5)
H17A0.26780.46190.19830.079*
C180.27730 (8)0.27190 (15)0.17954 (14)0.0616 (4)
H18A0.31880.26600.23750.074*
N10.33881 (9)0.20646 (15)0.17762 (14)0.0809 (5)
N20.18645 (7)0.40479 (13)0.07623 (12)0.0636 (4)
O10.54120 (7)0.01483 (14)0.08188 (14)0.1052 (6)
O20.62304 (6)0.12757 (12)0.04163 (12)0.0847 (5)
H2O0.6456 (10)0.046 (2)0.0532 (17)0.102*
O30.60808 (6)0.56199 (12)0.32305 (11)0.0733 (4)
H3O0.6234 (10)0.635 (2)0.3150 (17)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (9)0.0533 (9)0.0674 (12)0.0112 (7)0.0128 (8)0.0090 (8)
C20.0489 (10)0.0440 (9)0.0873 (13)0.0055 (7)0.0218 (9)0.0050 (9)
C30.0525 (10)0.0557 (9)0.0743 (12)0.0072 (7)0.0308 (9)0.0034 (8)
C40.0497 (9)0.0439 (8)0.0632 (11)0.0009 (6)0.0266 (8)0.0024 (7)
C50.0510 (9)0.0436 (8)0.0665 (11)0.0021 (6)0.0279 (8)0.0006 (7)
C60.0531 (10)0.0616 (10)0.0626 (11)0.0104 (7)0.0255 (9)0.0015 (8)
C70.0684 (13)0.0733 (12)0.0792 (13)0.0164 (10)0.0090 (10)0.0249 (10)
C80.0630 (12)0.0584 (10)0.0692 (12)0.0031 (8)0.0252 (10)0.0127 (9)
C90.0596 (10)0.0485 (8)0.0501 (9)0.0060 (7)0.0286 (8)0.0056 (7)
C100.0709 (12)0.0541 (10)0.0711 (12)0.0042 (8)0.0350 (10)0.0022 (8)
C110.0991 (16)0.0501 (10)0.0807 (13)0.0072 (10)0.0461 (12)0.0066 (9)
C120.0722 (13)0.0720 (13)0.0792 (13)0.0231 (10)0.0333 (11)0.0192 (10)
C130.0621 (11)0.0595 (10)0.0687 (12)0.0107 (8)0.0280 (10)0.0110 (8)
C140.0547 (9)0.0484 (8)0.0533 (9)0.0038 (7)0.0311 (8)0.0066 (7)
C150.0599 (10)0.0501 (9)0.0636 (11)0.0012 (7)0.0288 (9)0.0005 (8)
C160.0555 (10)0.0618 (10)0.0669 (11)0.0091 (8)0.0243 (9)0.0035 (9)
C170.0690 (12)0.0540 (9)0.0680 (11)0.0023 (8)0.0325 (10)0.0062 (8)
C180.0562 (10)0.0567 (9)0.0624 (11)0.0022 (7)0.0253 (9)0.0027 (8)
N10.1009 (14)0.0620 (10)0.0767 (11)0.0285 (9)0.0454 (10)0.0179 (8)
N20.0656 (10)0.0546 (8)0.0665 (9)0.0094 (7)0.0327 (8)0.0004 (7)
O10.0818 (10)0.0680 (9)0.1354 (14)0.0077 (7)0.0376 (9)0.0416 (9)
O20.0640 (9)0.0596 (7)0.0937 (10)0.0124 (6)0.0175 (8)0.0179 (7)
O30.0921 (10)0.0576 (7)0.0738 (8)0.0186 (6)0.0467 (8)0.0124 (6)
Geometric parameters (Å, º) top
C1—C21.379 (3)C10—C111.370 (2)
C1—C61.382 (2)C10—H10A0.9300
C1—C71.510 (2)C11—N11.330 (2)
C2—C31.377 (2)C11—H11A0.9300
C2—H2A0.9300C12—N11.337 (3)
C3—C41.384 (2)C12—C131.372 (2)
C3—H3A0.9300C12—H12A0.9300
C4—O31.3631 (19)C13—H13A0.9300
C4—C51.378 (2)C14—C181.385 (2)
C5—C61.380 (2)C14—C151.386 (2)
C5—H5A0.9300C15—C161.379 (2)
C6—H6A0.9300C15—H15A0.9300
C7—C81.503 (2)C16—N21.333 (2)
C7—H7A0.9700C16—H16A0.9300
C7—H7B0.9700C17—N21.327 (2)
C8—O11.190 (2)C17—C181.380 (2)
C8—O21.309 (2)C17—H17A0.9300
C9—C131.384 (2)C18—H18A0.9300
C9—C101.389 (2)O2—H2O0.97 (2)
C9—C141.484 (2)O3—H3O0.87 (2)
C2—C1—C6117.60 (16)C11—C10—H10A120.3
C2—C1—C7121.07 (18)C9—C10—H10A120.3
C6—C1—C7121.33 (19)N1—C11—C10124.19 (18)
C3—C2—C1121.66 (16)N1—C11—H11A117.9
C3—C2—H2A119.2C10—C11—H11A117.9
C1—C2—H2A119.2N1—C12—C13123.29 (19)
C2—C3—C4120.03 (17)N1—C12—H12A118.4
C2—C3—H3A120.0C13—C12—H12A118.4
C4—C3—H3A120.0C12—C13—C9119.99 (17)
O3—C4—C5123.41 (14)C12—C13—H13A120.0
O3—C4—C3117.52 (16)C9—C13—H13A120.0
C5—C4—C3119.07 (15)C18—C14—C15116.89 (14)
C4—C5—C6120.07 (14)C18—C14—C9121.49 (14)
C4—C5—H5A120.0C15—C14—C9121.61 (14)
C6—C5—H5A120.0C16—C15—C14119.74 (16)
C5—C6—C1121.56 (17)C16—C15—H15A120.1
C5—C6—H6A119.2C14—C15—H15A120.1
C1—C6—H6A119.2N2—C16—C15123.21 (16)
C8—C7—C1115.68 (15)N2—C16—H16A118.4
C8—C7—H7A108.4C15—C16—H16A118.4
C1—C7—H7A108.4N2—C17—C18123.72 (16)
C8—C7—H7B108.4N2—C17—H17A118.1
C1—C7—H7B108.4C18—C17—H17A118.1
H7A—C7—H7B107.4C17—C18—C14119.42 (16)
O1—C8—O2123.08 (17)C17—C18—H18A120.3
O1—C8—C7122.41 (17)C14—C18—H18A120.3
O2—C8—C7114.47 (15)C11—N1—C12116.44 (15)
C13—C9—C10116.75 (15)C17—N2—C16116.96 (14)
C13—C9—C14121.38 (14)C8—O2—H2O111.5 (12)
C10—C9—C14121.87 (15)C4—O3—H3O108.1 (14)
C11—C10—C9119.30 (18)
C6—C1—C2—C30.7 (2)N1—C12—C13—C91.8 (3)
C7—C1—C2—C3179.55 (15)C10—C9—C13—C121.1 (3)
C1—C2—C3—C40.6 (2)C14—C9—C13—C12179.22 (16)
C2—C3—C4—O3179.97 (15)C13—C9—C14—C1823.0 (2)
C2—C3—C4—C50.3 (2)C10—C9—C14—C18156.71 (16)
O3—C4—C5—C6179.78 (14)C13—C9—C14—C15156.28 (16)
C3—C4—C5—C60.2 (2)C10—C9—C14—C1524.1 (2)
C4—C5—C6—C10.2 (2)C18—C14—C15—C161.8 (2)
C2—C1—C6—C50.5 (2)C9—C14—C15—C16178.93 (15)
C7—C1—C6—C5179.37 (15)C14—C15—C16—N22.6 (3)
C2—C1—C7—C874.3 (2)N2—C17—C18—C141.4 (3)
C6—C1—C7—C8106.8 (2)C15—C14—C18—C170.1 (2)
C1—C7—C8—O1150.2 (2)C9—C14—C18—C17179.18 (15)
C1—C7—C8—O232.1 (3)C10—C11—N1—C120.9 (3)
C13—C9—C10—C110.4 (3)C13—C12—N1—C110.8 (3)
C14—C9—C10—C11179.26 (16)C18—C17—N2—C160.7 (3)
C9—C10—C11—N11.5 (3)C15—C16—N2—C171.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N2i0.97 (2)1.71 (2)2.679 (2)179 (2)
O3—H3O···N1ii0.87 (2)1.86 (2)2.728 (2)171 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2·C8H8O3
Mr308.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)25.3578 (6), 10.2305 (2), 14.2546 (4)
β (°) 122.321 (2)
V3)3125.03 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.14 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
24334, 3650, 2128
Rint0.043
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.06
No. of reflections3650
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N2i0.97 (2)1.71 (2)2.679 (2)179 (2)
O3—H3O···N1ii0.87 (2)1.86 (2)2.728 (2)171 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z+1/2.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, L., Zhou, Y., Wang, X. T., Li, X. & Tong, M. L. (2009). J. Mol. Struct. 923, 24–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomura, M. & Yamashita, Y. (2001). Chem. Lett. 30, 532–533.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds