supplementary materials


yk2008 scheme

Acta Cryst. (2011). E67, o1474    [ doi:10.1107/S1600536811018551 ]

N,P,P-Triisopropylphosphinic amide

N. Peulecke, B. R. Aluri, B. H. Müller, A. Spannenberg and U. Rosenthal

Abstract top

The title compound, C9H22NOP, was obtained by slow diffusion of oxygen into a toluene solution of iPr2PNHiPr. In the crystal, an intermolecular N-H...O hydrogen bond occurs.

Comment top

Aminophosphines with alkyl-substituents undergo oxidation very easily compared to their analogue aryl-substituted species. Most of the structurally characterized P,P-diorganylphosphinic amides R1R2P(O)NHR3 have a sterogenic phosphorus or nitrogen centre (Burns et al., 1997, Denmark et al., 2002, Kolodiazhnyi et al., 2003 and Francesco et al., 2010). Here we report about the structural characterization of the known compound (iPr)2P(O)N(H)iPr (Fig. 1). The P1—O1 distance is with 1.4799 (11) Å in the range of a PO double bond. A strong intermolecular hydrogen bond N1—H1A···O1 (N1···O1 2.834 (2), H1A···O1 1.98 Å and N1—H1A···O1 165°) was observed.

Related literature top

For the synthesis of the starting compound (iPr)2PNHiPr, see: Kuchen et al. (1990). For a similar synthesis of the title compound, see: Brück et al. (1995). For similar structures of R2P(O)NHR in which the phosporus has at least one alkyl moiety, see: Burns et al. (1997); Denmark & Dorow (2002); Kolodiazhnyi et al. (2003); Francesco et al. (2010).

Experimental top

A toluene solution (20 mL) of 0.4 g (2.3 mmol) (iPr)2PN(H)iPr (Kuchen et al., 1990) was exposed to dry air over a period of 48 h. After evaporation of the solvent, the oily residue was dissolved in n-hexane, filtrated and stored at -40°C for crystallization. After 3 days colourless crystals were formed, which were suitable for X-ray analysis. The analytical data of C9H22NOP correlated with those in the literature (Brück et al., 1995).

Refinement top

H atoms were placed in idealized positions with d(N—H) = 0.88, d(C—H) = 0.98 (CH3) and 1.00 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for NH and CH.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
N,P,P-Triisopropylphosphinic amide top
Crystal data top
C9H22NOPF(000) = 424
Mr = 191.25Dx = 1.037 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5563 reflections
a = 15.030 (3) Åθ = 2.1–29.2°
b = 8.4813 (17) ŵ = 0.19 mm1
c = 10.071 (2) ÅT = 195 K
β = 107.36 (3)°Prism, colourless
V = 1225.3 (4) Å30.42 × 0.26 × 0.20 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
2012 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
graphiteθmax = 27.5°, θmin = 2.8°
ω scansh = 1919
19581 measured reflectionsk = 1111
2807 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0547P)2]
where P = (Fo2 + 2Fc2)/3
2807 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C9H22NOPV = 1225.3 (4) Å3
Mr = 191.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.030 (3) ŵ = 0.19 mm1
b = 8.4813 (17) ÅT = 195 K
c = 10.071 (2) Å0.42 × 0.26 × 0.20 mm
β = 107.36 (3)°
Data collection top
Stoe IPDS II
diffractometer
2012 reflections with I > 2σ(I)
19581 measured reflectionsRint = 0.035
2807 independent reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.39 e Å3
S = 0.89Δρmin = 0.16 e Å3
2807 reflectionsAbsolute structure: ?
115 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.70679 (12)0.5276 (2)0.6731 (2)0.0525 (4)
H1B0.65130.55820.59410.063*
C20.68976 (19)0.5848 (2)0.8073 (3)0.0830 (7)
H2A0.74340.55740.88680.125*
H2B0.63360.53420.81780.125*
H2C0.68130.69950.80340.125*
C30.79173 (16)0.6067 (3)0.6497 (3)0.0802 (7)
H3A0.78120.72070.63960.120*
H3B0.80210.56450.56500.120*
H3C0.84660.58580.72940.120*
C40.61524 (11)0.22776 (19)0.69367 (17)0.0418 (4)
H40.61190.26070.78740.050*
C50.52745 (12)0.2872 (3)0.5848 (2)0.0653 (6)
H5A0.53200.26520.49150.098*
H5B0.52130.40100.59600.098*
H5C0.47270.23330.59710.098*
C60.62213 (15)0.0496 (2)0.6924 (2)0.0692 (6)
H6A0.56510.00340.70390.104*
H6B0.67590.01510.76890.104*
H6C0.62980.01500.60370.104*
C70.89734 (10)0.2189 (2)0.79953 (16)0.0427 (4)
H70.91060.28000.72260.051*
C80.96785 (13)0.2667 (3)0.9330 (2)0.0733 (6)
H8A0.96250.38010.94780.110*
H8B1.03060.24290.92820.110*
H8C0.95660.20831.01040.110*
C90.90379 (17)0.0463 (3)0.7687 (3)0.0834 (7)
H9A0.89150.01660.84290.125*
H9B0.96640.02260.76330.125*
H9C0.85760.02060.67970.125*
N10.80376 (9)0.26201 (16)0.80317 (13)0.0398 (3)
H1A0.79250.25900.88400.048*
O10.73426 (8)0.26804 (15)0.53446 (11)0.0531 (3)
P10.71920 (3)0.31507 (5)0.66763 (4)0.03470 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0490 (10)0.0468 (9)0.0619 (11)0.0063 (8)0.0167 (9)0.0155 (9)
C20.1089 (19)0.0465 (12)0.1096 (19)0.0121 (12)0.0570 (16)0.0108 (12)
C30.0785 (15)0.0565 (13)0.112 (2)0.0137 (11)0.0373 (14)0.0151 (12)
C40.0398 (8)0.0532 (10)0.0348 (8)0.0039 (7)0.0148 (7)0.0047 (7)
C50.0366 (9)0.0924 (16)0.0629 (12)0.0074 (9)0.0087 (8)0.0160 (11)
C60.0697 (13)0.0576 (12)0.0814 (15)0.0150 (10)0.0243 (12)0.0030 (10)
C70.0377 (8)0.0581 (11)0.0365 (8)0.0107 (7)0.0174 (7)0.0075 (7)
C80.0426 (10)0.1149 (19)0.0573 (12)0.0060 (11)0.0072 (9)0.0030 (12)
C90.0787 (15)0.0704 (15)0.1029 (19)0.0283 (12)0.0297 (14)0.0056 (13)
N10.0383 (7)0.0593 (8)0.0250 (6)0.0094 (6)0.0143 (5)0.0085 (6)
O10.0553 (7)0.0817 (9)0.0270 (6)0.0022 (6)0.0193 (5)0.0009 (5)
P10.03607 (19)0.0451 (2)0.02528 (19)0.00340 (18)0.01274 (14)0.00474 (18)
Geometric parameters (Å, °) top
C1—C31.521 (3)C6—H6A0.9800
C1—C21.528 (3)C6—H6B0.9800
C1—P11.8150 (18)C6—H6C0.9800
C1—H1B1.0000C7—N11.4644 (19)
C2—H2A0.9800C7—C81.498 (3)
C2—H2B0.9800C7—C91.505 (3)
C2—H2C0.9800C7—H71.0000
C3—H3A0.9800C8—H8A0.9800
C3—H3B0.9800C8—H8B0.9800
C3—H3C0.9800C8—H8C0.9800
C4—C61.515 (3)C9—H9A0.9800
C4—C51.527 (2)C9—H9B0.9800
C4—P11.8175 (16)C9—H9C0.9800
C4—H41.0000N1—P11.6265 (14)
C5—H5A0.9800N1—H1A0.8800
C5—H5B0.9800O1—P11.4799 (11)
C5—H5C0.9800
C3—C1—C2111.54 (18)H6A—C6—H6B109.5
C3—C1—P1109.54 (13)C4—C6—H6C109.5
C2—C1—P1112.84 (13)H6A—C6—H6C109.5
C3—C1—H1B107.6H6B—C6—H6C109.5
C2—C1—H1B107.6N1—C7—C8109.72 (14)
P1—C1—H1B107.6N1—C7—C9111.68 (15)
C1—C2—H2A109.5C8—C7—C9112.11 (17)
C1—C2—H2B109.5N1—C7—H7107.7
H2A—C2—H2B109.5C8—C7—H7107.7
C1—C2—H2C109.5C9—C7—H7107.7
H2A—C2—H2C109.5C7—C8—H8A109.5
H2B—C2—H2C109.5C7—C8—H8B109.5
C1—C3—H3A109.5H8A—C8—H8B109.5
C1—C3—H3B109.5C7—C8—H8C109.5
H3A—C3—H3B109.5H8A—C8—H8C109.5
C1—C3—H3C109.5H8B—C8—H8C109.5
H3A—C3—H3C109.5C7—C9—H9A109.5
H3B—C3—H3C109.5C7—C9—H9B109.5
C6—C4—C5111.69 (16)H9A—C9—H9B109.5
C6—C4—P1109.96 (12)C7—C9—H9C109.5
C5—C4—P1110.96 (11)H9A—C9—H9C109.5
C6—C4—H4108.0H9B—C9—H9C109.5
C5—C4—H4108.0C7—N1—P1124.33 (10)
P1—C4—H4108.0C7—N1—H1A117.8
C4—C5—H5A109.5P1—N1—H1A117.8
C4—C5—H5B109.5O1—P1—N1113.17 (7)
H5A—C5—H5B109.5O1—P1—C1109.89 (8)
C4—C5—H5C109.5N1—P1—C1108.11 (8)
H5A—C5—H5C109.5O1—P1—C4113.05 (8)
H5B—C5—H5C109.5N1—P1—C4104.85 (7)
C4—C6—H6A109.5C1—P1—C4107.44 (8)
C4—C6—H6B109.5
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.881.982.8344 (17)165
Symmetry codes: (i) x, −y+1/2, z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.881.982.8344 (17)165
Symmetry codes: (i) x, −y+1/2, z+1/2.
Acknowledgements top

This work was supported by the Leibniz-Institut für Katalyse e.V. an der Universität Rostock.

references
References top

Brück, A., Kuchen, W. & Peters, W. (1995). Phosphorus Sulfur Silicon Relat. Elem. 107, 129–133.

Burns, B., Gamble, M. P., Simm, A. R. C., Studley, J. R., Alcock, N. W. & Wills, M. (1997). Tetrahedron Asymmetry, 8, 73–78.

Denmark, S. E. & Dorow, R. L. (2002). Chirality, 14, 241–257.

Francesco, I. N., Wagner, A. & Colobert, F. (2010). Chem. Commun. 46, 2139–2141.

Kolodiazhnyi, O. I., Gryshkun, E. V., Andrushko, N. V., Freytag, M., Jones, P. G. & Schmutzler, R. (2003). Tetrahedron Asymmetry, 14, 181–183.

Kuchen, W., Langsch, D. & Peters, W. (1990). Phosphorus Sulfur Silicon Relat. Elem. 54, 55–61.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.